Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Principled Missing Data Treatments

  • Published:
Prevention Science Aims and scope Submit manuscript

Abstract

We review a number of issues regarding missing data treatments for intervention and prevention researchers. Many of the common missing data practices in prevention research are still, unfortunately, ill-advised (e.g., use of listwise and pairwise deletion, insufficient use of auxiliary variables). Our goal is to promote better practice in the handling of missing data. We review the current state of missing data methodology and recent missing data reporting in prevention research. We describe antiquated, ad hoc missing data treatments and discuss their limitations. We discuss two modern, principled missing data treatments: multiple imputation and full information maximum likelihood, and we offer practical tips on how to best employ these methods in prevention research. The principled missing data treatments that we discuss are couched in terms of how they improve causal and statistical inference in the prevention sciences. Our recommendations are firmly grounded in missing data theory and well-validated statistical principles for handling the missing data issues that are ubiquitous in biosocial and prevention research. We augment our broad survey of missing data analysis with references to more exhaustive resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage Publications.

    Book  Google Scholar 

  • Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200–203. doi:10.1080/01621459.1957.10501379.

    Article  Google Scholar 

  • Andridge, R. R., & Little, R. J. A. (2010). A review of hot deck imputation for survey non-response. International Statistical Review, 78, 40–64. doi:10.1111/j.1751-5823.2010.00103.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Bodner, T. E. (2006). Missing data: prevalence and reporting practices. Psychological Reports, 99, 675–680. doi:10.2466/PR0.99.7.675-680.

    Article  PubMed  Google Scholar 

  • Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. Chichester, West Sussex: Wiley.

  • Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351. doi:10.1037//1082-989X.6.4.330.

    Article  CAS  PubMed  Google Scholar 

  • Diggle, P., & Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics, 43, 49–94.

    Article  Google Scholar 

  • Enders, C. K. (2001). The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, 61, 713–740. doi:10.1177/00131640121971482.

    Article  Google Scholar 

  • Enders, C. K. (2010). Applied missing data analysis. New York: Guilford.

    Google Scholar 

  • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430–457. doi:10.1207/S15328007SEM0803_5.

    Article  Google Scholar 

  • Goldstein, H., Carpenter, J., Kenward, M. G., & Levin, K. A. (2009). Multilevel models with multivariate mixed response types. Statistical Modelling., 9, 173–197. doi:10.1177/1471082X0800900301.

    Article  Google Scholar 

  • Goldstein, H., Carpenter, J., & Browne, W. J. (2014). Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 553–564. doi:10.1111/rssa.12022.

    Article  Google Scholar 

  • Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80–100. doi:10.1207/S15328007SEM1001_4.

    Article  Google Scholar 

  • Graham, J. (2012). Missing data: analysis and design. New York: Springer.

    Book  Google Scholar 

  • Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206–213. doi:10.1007/s11121-007-0070-9.

    Article  PubMed  Google Scholar 

  • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. The Annals of Economic and Social Measurement, 5, 475–492.

    Google Scholar 

  • Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153–161. doi:10.2307/1912352.

    Article  Google Scholar 

  • Honaker, J., & King, G. (2010). What to do about missing values in time-series cross-section data. American Journal of Political Science, 54, 561–581. doi:10.1111/j.1540-5907.2010.00447.x.

    Article  Google Scholar 

  • Honaker, J., King, G., & Blackwell, M. (2011). Amelia II: a program for missing data. Journal of Statistical Software, 45, 1–47.

    Article  Google Scholar 

  • Howard, W., Rhemtulla, M., & Little, T. D. (2015). Using principal components as auxiliary variables in missing data estimation. Multivariate Behavioral Research, 50, 285–299. doi:10.1080/00273171.2014.999267.

    Article  PubMed  Google Scholar 

  • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125–134. doi:10.2307/2290705.

    Google Scholar 

  • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112–1121. doi:10.1080/01621459.1995.10476615.

    Article  Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken, NJ: John Wiley & Sons.

    Book  Google Scholar 

  • Little, R. J. A., & Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52, 1324–1333. doi:10.2307/2532847.

    Article  CAS  PubMed  Google Scholar 

  • Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, E. W. G. (2014). On the joys of missing data. Journal of Pediatric Psychology, 39, 151–162. doi:10.1093/jpepsy/jst048.

    Article  PubMed  Google Scholar 

  • Little, T. D., Lang, K. M., Wu, W., & Rhemtulla, M. (2016). Missing data. In D. Cicchetti (Ed.), Developmental Psychopathology: Vol. 1. Theory and method (3rd ed., pp. 760–796). New York: Wiley.

  • Liu, M., Taylor, J. M. G., & Belin, T. R. (2000). Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies. Biometrics, 56, 1157–1163. doi:10.1111/j.0006-341X.2000.01157.x.

    Article  CAS  PubMed  Google Scholar 

  • Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: a review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556. doi:10.3102/00346543074004525.

    Article  Google Scholar 

  • Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85–96.

    Google Scholar 

  • Rubin, D. B. (1978). Multiple imputations in sample surveys—a phenomenological Bayesian approach to nonresponse (Proceedings of the Survey Research Methods Section of the American Statistical Association, pp. 30–34).

    Google Scholar 

  • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.

    Book  Google Scholar 

  • Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473–489. doi:10.2307/2291635.

    Article  Google Scholar 

  • Savalei, V., & Rhemtulla, M. (2012). On obtaining estimates of the fraction of missing information from full information maximum likelihood. Structural Equation Modeling, 19, 477–494. doi:10.1080/10705511.2012.687669.

    Article  Google Scholar 

  • Schafer, J. L. (1997). Analysis of incomplete multivariate data. New York: Chapman Hall.

    Book  Google Scholar 

  • Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics., 11, 437–457. doi:10.1198/106186002760180608.

    Article  Google Scholar 

  • van Buuren, S. (2011). Multiple imputation of multilevel data. In J. Hox & J. Roberts (Eds.), Handbook of advanced multilevel analysis (pp. 173–196). Milton Park, UK: Routledge.

    Google Scholar 

  • van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: multivariate imputation by chained equations in R. Journal of Statistical Software, 45, 1–67.

    Article  Google Scholar 

  • van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 1049–1064. doi:10.1080/10629360600810434.

    Article  Google Scholar 

  • von Hippel, P. T. (2007). Regression with missing Ys: an improved strategy for analyzing multiply imputed data. Sociological Methodology, 37, 83–117. doi:10.1111/j.1467-9531.2007.00180.x.

    Article  Google Scholar 

  • von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265–291. doi:10.1111/j.1467-9531.2009.01215.x.

    Article  Google Scholar 

  • Wilkinson, L., & Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: guidelines and explanations. American Psychologist, 54, 594–604. doi:10.1037//0003-066X.54.8.594.

    Article  Google Scholar 

  • Wu, W., Jia, F., & Enders, C. K. (2015). A comparison of imputation strategies for ordinal missing data on Likert scale variables. Multivariate Behavioral Research, 50, 484–503. doi:10.1080/00273171.2015.1022644.

    Article  PubMed  Google Scholar 

  • Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389–2403. doi:10.1098/rsta.2008.0038.

    Article  Google Scholar 

  • Zhao, J. H., & Schafer, J. L. (2013). pan: multiple imputation for multivariate panel or clustered data (Version 0.9) [R Package].

    Google Scholar 

  • Zhao, E., & Yucel, R. M. (2009). Performance of sequential imputation method in multilevel applications. In the Proceedings of the American Statistical Association Survey Research Methods Section (pp. 2800–2810).

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the diligent assistance of Jacob Curtis, Brooke Bell, Naomi Norwid, Virginia Stokes, and Jacquelyn Wall in preparing the systematic literature review presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyle M. Lang or Todd D. Little.

Ethics declarations

Conflict of Interest

Todd D. Little owns and receives remuneration from Yhat Enterprises (yhatenterprises.com), which runs educational workshops such as Stats Camp (statscamp.org), and processes his royalties and his fees for consulting on statistics and methods with life science researchers.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Funding

This study was supported by grant NSF 1053160 (Wei Wu and Todd D. Little, co-PIs) and by the Institute for Measurement, Methodology, Analysis, and Policy (Todd D. Little, Director) at Texas Tech University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, K.M., Little, T.D. Principled Missing Data Treatments. Prev Sci 19, 284–294 (2018). https://doi.org/10.1007/s11121-016-0644-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11121-016-0644-5

Keywords

Navigation