Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Co-existence of OFDM and FBMC for resilient photonic millimeter-wave 5G mobile fronthaul

  • Invited Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper presents a novel co-existence of multiple Fifth-Generation (5G) services employing Orthogonal Frequency Division Multiplexing (OFDM) and Filter Bank Multicarrier (FBMC) waveforms in a resilient photonic Millimeter-wave (mmWave) mobile fronthaul architecture. The 5G services are delivered to the remote antenna using shared optical infrastructure and simultaneously upconverted to mmWave frequencies using only one optical local oscillator (LO) for heterodyne upconversion. Radio-over-fiber technology is employed for cloud-radio access network, in which the optical LO used for mmWave upconversion can be placed either at the remote radio head shared by both downlink and uplink signals or remotely delivered from the central office. In addition, the proposed architecture supports the integration of wavelength division multiplexing technology, which enables seamless scalability and management of the photonic infrastructure. As multiple lasers beat to generate the mmWave signals, laser phase noise becomes the dominant system impairment, degrading the detection performance. In order to mitigate the effect, frequency averaging technique is applied to enhance the channel estimation. The comprehensive analysis of different transmission scenarios using industry standard VPI Transmission Maker® simulation platform has demonstrated successful co-existence and transmission of OFDM and FBMC 5G services simultaneously upconverted to 28 GHz, 38 GHz and 60 GHz mmWave signals after 40 km fiber and 2 m wireless. Compared with FBMC, OFDM exhibits better resilience to phase noise with better Error Vector Magnitude (EVM) values at low received powers, but with the application of intra-symbol frequency-domain averaging, the EVM performance of FBMC is comparable to OFDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cisco Visual Networking: Global mobile data traffic forecast update (2016–2021). www.cisco.com

  2. Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)

    Article  Google Scholar 

  3. Rappaport, T.S., Shu, S., Mayzus, R., Hang, Z., Azar, Y., Wang, K., et al.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  4. Andrews, J.G., Buzzi, S., Wan, C., Hanly, S.V., Lozano, A., Soong, A.C.K., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014)

    Article  Google Scholar 

  5. Liu, X., Effenberger, F.: Emerging optical access network technologies for 5G wireless [invited]. IEEE/OSA J. Opt. Commun. Netw. 8, B70–B79 (2016)

    Article  Google Scholar 

  6. Checko, A., Christiansen, H.L., Yan, Y., Scolari, L., Kardaras, G., Berger, M.S., et al.: Cloud RAN for mobile networks-a technology overview. IEEE Commun. Surv. Tutor. 17, 405–426 (2015)

    Article  Google Scholar 

  7. Cheng, L., Zhu, M., Gul, M.M.U., Ma, X., Chang, G.K.: Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul. J. Lightwave Technol. 32, 1907–1914 (2014)

    Article  Google Scholar 

  8. Pizzinat, A., Chanclou, P., Saliou, F., Diallo, T.: Things you should know about fronthaul. J. Lightwave Technol. 33, 1077–1083 (2015)

    Article  Google Scholar 

  9. Alimi, I.A., Teixeira, A.L., Monteiro, P.P.: Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges, and solutions. IEEE Commun. Surv. Tutor. 20, 708–769 (2018)

    Article  Google Scholar 

  10. Tzanakaki, A., Anastasopoulos, M., Berberana, I., Syrivelis, D., Flegkas, P., Korakis, T., et al.: Wireless-optical network convergence: enabling the 5G architecture to support operational and end-user services. IEEE Commun. Mag. 55, 184–192 (2017)

    Article  Google Scholar 

  11. Pfeiffer, T.: Next generation mobile fronthaul and midhaul architectures [invited]. IEEE/OSA J. Opt. Commun. Netw. 7, B38–B45 (2015)

    Article  Google Scholar 

  12. Kani, J.I., Terada, J., Suzuki, K.I., Otaka, A.: Solutions for future mobile fronthaul and access-network convergence. J. Lightwave Technol. 35, 527–534 (2017)

    Google Scholar 

  13. Oliva, A.D.I., Hernandez, J.A., Larrabeiti, D., Azcorra, A.: An overview of the CPRI specification and its application to C-RAN-based LTE scenarios. IEEE Commun. Mag. 54, 152–159 (2016)

    Article  Google Scholar 

  14. Ranaweera, C., Wong, E., Nirmalathas, A., Jayasundara, C., Lim, C.: 5G C-RAN architecture: a comparison of multiple optical fronthaul networks. Int. Conf. Opt. Netw. Des. Model. (ONDM) 2017, 1–6 (2017)

    Google Scholar 

  15. Nanba, S., Agata, A.: A new IQ data compression scheme for front-haul link in Centralized RAN. In: 2013 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), pp. 210–214 (2013)

  16. Shibata, N., Kuwano, S., Terada, J., Kimura, H.: Dynamic IQ compression technique in mobile front-haul for mobile optical network. In: 2014 12th International Conference on Optical Internet 2014 (COIN), pp. 1–2 (2014)

  17. Vu, T.X., Nguyen, H.D., Quek, T.Q.S., Sun, S.: Adaptive cloud radio access networks: compression and optimization. IEEE Trans. Signal Process. 65, 228–241 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X., Zeng, H., Chand, N., Effenberger, F.: Efficient mobile fronthaul via DSP-based channel aggregation. J. Lightwave Technol. 34, 1556–1564 (2016)

    Article  Google Scholar 

  19. Liu, X., Zeng, H., Chand, N., Effenberger, F.: Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-μs processing latency. In: 2015 European Conference on Optical Communication (ECOC), pp. 1–3 (2015)

  20. Liu, X., Effenberger, F., Chand, N., Lei, Z., Huafeng, L.: Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel. In: 2015 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2015)

  21. Chang, G.K., Cheng, L.: Fiber-wireless integration for future mobile communications. In: 2017 IEEE Radio and Wireless Symposium (RWS), pp. 16–18 (2017)

  22. Sakaguchi, K., Haustein, T., Barbarossa, S., Strinati, E.C., Clemente, A., Destino, G., et al.: Where, when, and how mmWave is used in 5G and beyond. IEICE Trans. Electron. 100, 790–808 (2017)

    Article  Google Scholar 

  23. Parkvall, S., Dahlman, E., Furuskar, A., Frenne, M.: NR: the new 5G radio access technology. IEEE Commun. Standards Mag. 1, 24–30 (2017)

    Article  Google Scholar 

  24. Maccartney, G.R., Junhong, Z., Shuai, N., Rappaport, T.S.: Path loss models for 5G millimeter wave propagation channels in urban microcells. In: Global Communications Conference (GLOBECOM), 2013 IEEE, pp. 3948–3953 (2013)

  25. Rappaport, T.S., Shu, S., Mayzus, R., Hang, Z., Azar, Y., Wang, K., et al.: Millimeter wave mobile communications for 5G cellular: it will work! Access IEEE 1, 335–349 (2013)

    Article  Google Scholar 

  26. Musumeci, F., Bellanzon, C., Carapellese, N., Tornatore, M., Pattavina, A., Gosselin, S.: Optimal BBU placement for 5G C-RAN deployment over WDM aggregation networks. J. Lightwave Technol. 34, 1963–1970 (2016)

    Article  Google Scholar 

  27. Talli, G., Porto, S., Carey, D., Brandonisio, N., Ossieur, P., Townsend, P. et al.: Technologies and architectures to enable SDN in converged 5G/optical access networks. In: 2017 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–6 (2017)

  28. Thomas, V., El-Hajjar, M., Hanzo, L.: Millimeter-wave radio over fiber optical upconversion techniques relying on link non-linearity. IEEE Commun. Surv. Tutor. 17, 627–670 (2015)

    Article  Google Scholar 

  29. Shu-Hao, F., Cheng, L., Gee-Kung, C.: Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems. J. Lightwave Technol. 31, 3210–3216 (2013)

    Article  Google Scholar 

  30. Dat, P.T., Kanno, A., Inagaki, K., Kawanishi, T.: High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave. J. Lightwave Technol. 32, 3910–3923 (2014)

    Article  Google Scholar 

  31. Xinying, L., Junwen, Z., Jiangnan, X., Ziran, Z., Yuming, X., Jianjun, Y.: W-band 8QAM vector signal generation by MZM-based photonic frequency octupling. Photonics Technol. Lett. IEEE 27, 1257–1260 (2015)

    Article  Google Scholar 

  32. Dat, P.T., Kanno, A., Yamamoto, N., Kawanishi, T.: Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over an IFoF system. In: 2017 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2017)

  33. Insua, I.G., Plettemeier, D., Schaffer, C.G.: Simple remote heterodyne radio-over-fiber system for gigabit per second wireless access. J. Lightwave Technol. 28, 2289–2295 (2010)

    Article  Google Scholar 

  34. Islam, A.H.M.R., Bakaul, M., Nirmalathas, A., Town, G.E.: Simplification of millimeter-wave radio-over-fiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver. Opt. Express 20, 5707–5724 (2012)

    Article  Google Scholar 

  35. Omomukuyo, O., Thakur, M.P., Mitchell, J.E.: Simple 60-GHz MB-OFDM ultrawideband rof system based on remote heterodyning. IEEE Photonics Technol. Lett. 25, 268–271 (2013)

    Article  Google Scholar 

  36. Kanno, A., Dat, P.T., Kuri, T., Hosako, I., Kawanishi, T., Yoshida, Y., et al.: Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks. IEEE Photonics J. 4, 2196–2204 (2012)

    Article  Google Scholar 

  37. Bekkali, A., Nishimura, K.: Seamless convergence of radio-over-fiber and millimeter-wave links for highly resilient access networks. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6 (2016)

  38. Farhang-Boroujeny, B., Moradi, H.: OFDM inspired waveforms for 5G. IEEE Commun. Surv. Tutor. 18, 2474–2492 (2016)

    Article  Google Scholar 

  39. Schaich, F., Wild, T.: Waveform contenders for 5G; OFDM vs. FBMC vs. UFMC. In: 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 457–460 (2014)

  40. Renfors, M., Siohan, P., Farhang-Boroujeny, B., Bader, F.: Filter banks for next generation multicarrier wireless communications. EURASIP J. Adv. Signal Process. 2010, 314193 (2010)

    Article  Google Scholar 

  41. Xu, M., Zhang, J., Lu, F., Wang, J., Cheng, L., Cho, H.J., et al.: FBMC in next-generation mobile fronthaul networks with centralized pre-equalization. IEEE Photonics Technol. Lett. 28, 1912–1915 (2016)

    Article  Google Scholar 

  42. Zhang, J., Xu, M., Wang, J., Lu, F., Cheng, L., Cho, H., et al.: Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks. J. Lightwave Technol. 35, 989–996 (2017)

    Article  Google Scholar 

  43. Liu, X., Buchali, F.: Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM. Opt. Express 16, 21944–21957 (2008)

    Article  Google Scholar 

  44. Yang, Q., Kaneda, N., Liu, X., Shieh, W.: Demonstration of frequency-domain averaging based channel estimation for 40-Gb/s CO-OFDM with high PMD. IEEE Photonics Technol. Lett. 21, 1544–1546 (2009)

    Article  Google Scholar 

  45. Checko, A., Christiansen, H.L., Yan, Y., Scolari, L., Kardaras, G., Berger, M.S., et al.: Cloud RAN for mobile networks -a technology overview. IEEE Commun. Surv. Tutor. 17, 405–426 (2015)

    Article  Google Scholar 

  46. Sulyman, A.I., Nassar, A.T., Samimi, M.K., Maccartney, G.R., Rappaport, T.S., Alsanie, A.: Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Commun. Mag. 52, 78–86 (2014)

    Article  Google Scholar 

  47. Rappaport, T.S., Gutierrez, F., Ben-Dor, E., Murdock, J.N., Qiao, Y., Tamir, J.I.: Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61, 1850–1859 (2013)

    Article  Google Scholar 

  48. Azar, Y., Wong, G.N., Wang, K., Mayzus, R., Schulz, J.K., Zhao, H. et al.: 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city. In: 2013 IEEE International Conference on Communications (ICC), pp. 5143–5147 (2013)

  49. Shafik, R.A., Rahman, S., Islam, R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: ICECE ‘06. International Conference on Electrical and Computer Engineering, 2006, pp. 408–411 (2006)

  50. Bellanger, D.L.R.M., Roviras, D., Terré, M., Nossek, J., Baltar, L., Bai, Q., Waldhauser, D., Renfos, M., Ihalainen, T.: FBMC physical layer: A primer. Technical Report 2010 (2010)

  51. Lélé, C., Javaudin, J.P., Legouable, R., Skrzypczak, A., Siohan, P.: Channel estimation methods for preamble-based OFDM/OQAM modulations. Eur. Trans. Telecommun. 19, 741–750 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abayomi T. Latunde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latunde, A.T., Papazafeiropoulos, A., Kourtessis, P. et al. Co-existence of OFDM and FBMC for resilient photonic millimeter-wave 5G mobile fronthaul. Photon Netw Commun 37, 335–348 (2019). https://doi.org/10.1007/s11107-019-00845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00845-z

Keywords

Navigation