Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

RelPath: an interactive tool to visualize branches of studies and quantify the expertise of authors by citation paths

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Networks of scientific publications play a fundamental role in the search for relevant papers to a specific research topic, as well as in finding authors with expertise in different branches of study. Making a selection of the most important references of a specific paper to understand the evolution of a branch of study is an essential task in the academic world. A challenge for the scientific community has been to identify possible authors relevant to a target paper, for example, to select them as potential reviewers. A solution to find potential expert candidates can be based on the network of citations and on how relevant the authors of selecting papers are in relation to the target paper. With the motivation for developing interactive visual software that helps both researchers and editorial committees, in this paper we present RelPath, a system to help with the task of finding relevant papers and authors for a selected paper. RelPath includes the submission paper in a citations network and establishes relevance of the edges in the network, through which it is possible to build branches of studies and establish a ranking of authors. In this work, we introduce an index to quantify the expertise of the authors by citation paths and we propose a collaborative method to ranking references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Considering abstract, title, and keyword as the corpus for each document.

  2. NoSQL(not only SQL) is a class of database management systems (DBMS).

  3. ‘Marching cubes’ is a computer graphic topic on the extraction of isosurfaces.

  4. https://scholar.google.com.

  5. Information provided by Google Scholar, December 22, 2019.

References

  • Afzal, M. T., & Maurer, H. A. (2011). Expertise Recommender system for scientific community. Journal of Universal Computer Science, 17(11), 1529–1549.

    Google Scholar 

  • Amjad, T., Daud, A., & Aljohani, N. R. (2018). Ranking authors in academic social networks: A survey. Library Hi Tech, 36(1), 97–128.

    Article  Google Scholar 

  • An, Y., Janssen, J., & Milios, E. E. (2004). Characterizing and mining the citation graph of the computer science literature. Knowledge and Information Systems, 6(6), 664–678.

    Article  Google Scholar 

  • BV, A. (2018). vis.js-A dynamic, browser based visualization library. Disponıvel em:http://visjs.org/.

  • Balog, K., Fang, Y., De Rijke, M., Serdyukov, P., & Si, L. (2012). Expertise retrieval. Foundations and Trends in Information Retrieval, 6(2–3), 127–256.

    Article  Google Scholar 

  • Balog, K., & De Rijke, M. (2007). Determining expert profiles (With an application to expert finding). IJCAI, 7, 2657–2662.

    Google Scholar 

  • Battista, G. D., Eades, P., Tamassia, R., & Tollis, I. G. (1998). Graph drawing: Algorithms for the visualization of graphs. New Jersey: Prentice Hall PTR.

    MATH  Google Scholar 

  • Beck, F., Koch, S., & Weiskopf, D. (2015). Visual analysis and dissemination of scientific literature collections with SurVis. IEEE Transactions on Visualization and Computer Graphics, 22(1), 180–189.

    Article  Google Scholar 

  • Berger, M., McDonough, K., & Seversky, L. M. (2016). cite2vec: Citation-driven document exploration via word embeddings. IEEE Transactions on Visualization and Computer Graphics, 23(1), 691–700.

    Article  Google Scholar 

  • Biswas, H. K., & Hasan, M. M. (2007). Using publications and domain knowledge to build research profiles: An application in automatic reviewer assignment. In International Conference on Information and Communication Technology (pp. 82-86).

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Bogers, T., Kox, K., & van den Bosch, A. (2008). Using citation analysis for finding experts in workgroups. In Proc. DIR (pp. 21-28).

  • Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  • Boyack, K. W., & Klavans, R. (2014). Creation of a highly detailed, dynamic, global model and map of science. Journal of the Association for Information Science and Technology, 65(4), 670–685.

    Article  Google Scholar 

  • Chou, J. K., & Yang, C. K. (2011). PaperVis: Literature review made easy. In Computer Graphics Forum (Vol. 30, No. 3, pp. 721–730). Oxford, UK: Blackwell Publishing Ltd.

  • Demartini, G., Gaugaz, J., & Nejdl, W. (2009). A vector space model for ranking entities and its application to expert search. In European Conference on Information Retrieval (pp. 189–201). Springer, Berlin, Heidelberg.

  • Deng, H., King, I., & Lyu, M. R. (2008). Formal models for expert finding on dblp bibliography data. In: Eighth IEEE International Conference on Data Mining (pp. 163–172).

  • Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and Technology, 38(1), 188–230.

    Article  Google Scholar 

  • Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.

    Article  MathSciNet  Google Scholar 

  • Fonseca, O., Barbosa S., & Pesco S. (2019). A Collaborative Support for Recommending References in Papers. XXXII Conference on Graphics, Patterns and Images, 42–48.

  • Ginde, G. (2016). Visualisation of massive data from scholarly Article and Journal Database A Novel Scheme. arXiv preprint arXiv:1611.01152.

  • Heimerl, F., Han, Q., Koch, S., & Ertl, T. (2015). CiteRivers: Visual analytics of citation patterns. IEEE Transactions on Visualization and Computer Graphics, 22(1), 190–199.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.

    Article  Google Scholar 

  • Liu, X., Suel, T., & Memon, N. (2014). A robust model for paper reviewer assignment. In Proceedings of the 8th ACM Conference on Recommender systems (pp. 25-32).

  • Li, X., & Watanabe, T. (2013). Automatic paper-to-reviewer assignment, based on the matching degree of the reviewers. Procedia Computer Science, 22, 633–642.

    Article  Google Scholar 

  • Li, Z., Zhang, C., Jia, S., & Zhang, J. (2019). Galex: Exploring the evolution and intersection of disciplines. IEEE Transactions on Visualization and Computer Graphics, 26(1), 1182–1192.

    Google Scholar 

  • Macdonald, C., & Ounis, I. (2006). Voting for candidates: Adapting data fusion techniques for an expert search task. In: Proceedings of the 15th ACM international conference on Information and knowledge management (pp. 387–396).

  • Ma, S., Zhang, C., & Liu, X. (2020). A review of citation recommendation: From textual content to enriched context. Scientometrics, 122(3), 1445–1472.

    Article  Google Scholar 

  • Mimno, D., & McCallum, A. (2007). Expertise modeling for matching papers with reviewers. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 500–509).

  • Newman, T. S., & Yi, H. (2006). A survey of the marching cubes algorithm. Computers and Graphics, 30(5), 854–879.

    Article  Google Scholar 

  • Price, S., & Flach, P. A. (2017). Computational support for academic peer review: A perspective from artificial intelligence. Communications of the ACM, 60(3), 70–79.

    Article  Google Scholar 

  • Rassovsky, G. (2014). Cubical marching squares implementation. Poole: Bournemouth University.

    Google Scholar 

  • Salinas, M., Giorgi, D., & Cignoni, P. (2019). ReviewerNet: Visualizing citation and authorship relations for finding reviewers. arXiv preprint arXiv:1903.08004.

  • Salton, G., & Yang, C. S. (1973). On the specification of term values in automatic indexing. New York: Cornell University.

    Book  Google Scholar 

  • Simoes, N., & Crespo, N. (2020). A flexible approach for measuring author-level publishing performance. Scientometrics, 122(1), 331–355.

    Article  Google Scholar 

  • Valenzuela, M., Ha, V., & Etzioni, O. (2015). Identifying meaningful citations. In AAAI workshop: Scholarly big data.

  • Van Rossum, G., & Drake, F. L. (2011). Python language reference manual. Bristol: Network Theory Ltd.

  • Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., & Partner, J. (2014). Neo4j in action. New York: Manning Publications Co.

    Google Scholar 

  • Wang, G. A., Jiao, J., Abrahams, A. S., Fan, W., & Zhang, Z. (2013). ExpertRank: A topic-aware expert finding algorithm for online knowledge communities. Decision Support Systems, 54(3), 1442–1451.

    Article  Google Scholar 

  • Waumans, M. C., & Bersini, H. (2016). Genealogical trees of scientific papers. PloS One, 11(3), e0150588.

    Article  Google Scholar 

  • Wei, H., Zhao, Y., Wu, S., Deng, Z., Parvinzamir, F., Dong, F., Liu, E., & Clapworthy, G. (2016). Management of scientific documents and visualization of citation relationships using weighted key scientific terms. In Proceedings of the 5th International Conference on Data Management Technologies and Applications - Volume 1 (pp. 135–143). Lisbon.

  • Zhao, D., & Strotmann, A. (2020). Deep and narrow impact: Introducing location filtered citation counting. Scientometrics, 122(1), 503–517.

    Article  Google Scholar 

  • Zhou, Z., Shi, C., Hu, M., & Liu, Y. (2018). Visual ranking of academic influence via paper citation. Journal of Visual Languages and Computing, 48, 134–143.

    Article  Google Scholar 

  • Zhu, X., Turney, P., Lemire, D., & Vellino, A. (2015). Measuring academic influence: Not all citations are equal. Journal of the Association for Information Science and Technology, 66(2), 408–427.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Fonseca Guilarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilarte, O.F., Barbosa, S.D.J. & Pesco, S. RelPath: an interactive tool to visualize branches of studies and quantify the expertise of authors by citation paths. Scientometrics 126, 4871–4897 (2021). https://doi.org/10.1007/s11192-021-03959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-021-03959-2

Keywords

Navigation