Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A convolution-based fractional transform

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The fractional transforms are a class of powerful tool for the presentation of time–frequency domains in the field of signal processing. Based on the convolution algorithm of discrete fractional Fourier transform and gyrator transform, we propose a generalized framework defining a class of fractional transforms. By choosing various phase filters, the fractional transform can be employed for different computational tasks of information processing. The several properties of typical fractional transform are reserved in this definition scheme. Under the model of the convolution-based transform, fractional Fourier transform and gyrator transform are synthesized. Moreover, the transform can be implemented by an optical 4f system with phase-only filtering easily, which is a useful tool in the application of optical information processing. Numerical results are given for demonstrating the proposed transform and its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen, H., Du, X., Liu, Z.: Optical spectrum encryption in associated fractional Fourier transform and gyrator transform domain. Opt. Quant. Electron. 48, 12 (2016a). doi:10.1007/s11082-015-0291-2.

    Article  Google Scholar 

  • Chen, H., Tanougast, C., Liu, Z., Hao, B.: Securing color image by using hyperchaotic system in gyrator transform domains. Opt. Quant. Electron. 48, 396 (2016b). doi:10.1007/s11082-016-0669-9.

    Article  Google Scholar 

  • Goodman, J.W.: Introduction to Fourier Optics, pp. 243–251. McGraw-Hill, New York (1968)

    Google Scholar 

  • Lang, J., Tao, R., Wang, Y.: Image encryption based on the multiple-parameter discrete fractional Fourier transform and chaos function. Opt. Commun. 283, 2092–2096 (2010)

    Article  ADS  Google Scholar 

  • Liu, Z., Liu, S.: Randomization of the Fourier transform. Opt. Lett. 32, 478–480 (2007a).

    Article  ADS  Google Scholar 

  • Liu, Z., Liu, S.: Random fractional Fourier transform. Opt. Lett. 32, 2088–2090 (2007b)

    Article  ADS  Google Scholar 

  • Liu, Z., Zhao, H., Liu, S.: A discrete fractional random transform. Opt. Commun. 255, 357–365 (2005)

    Article  ADS  Google Scholar 

  • Liu, Z., Ahmad, M.A., Liu, S.: A discrete fractional angular transform. Opt. Commun. 281, 1424–1429 (2008)

    Article  ADS  Google Scholar 

  • Liu, Z., Chen, D., Ma, J., Wei, S., Zhang, Y., Dai, J., Liu, S.: Fast algorithm of discrete gyrator transform based on convolution operation. Optik 122, 864–867 (2011a)

    Article  ADS  Google Scholar 

  • Liu, Z., Zhang, Y., Zhao, H., Ahmad, A.A., Liu, S.: Optical multi-image encryption based on frequency shift. Optik 122, 1010–1013 (2011b)

    Article  ADS  Google Scholar 

  • Liu, Z., Gong, M., Dou, Y., Liu, F., Lin, S., Ahmad, M.A., Dai, J., Liu, S.: Double image encryption by using Arnold transform and discrete fractional angular transform. Opt. Lasers Eng. 50, 248–255 (2012)

    Article  Google Scholar 

  • Liu, Z., Tan, J., Liu, W., Wu, J., Wu, Q., Liu, S.: A diffraction model of direction multiplexing method for hiding multiple images. J. Mod. Opt. 61, 1127–1132 (2014)

    Article  ADS  Google Scholar 

  • Liu, Z., Guo, C., Tan, J., Wu, Q., Pan, L., Liu, S.: Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms. J. Opt. 17, 025701 (2015). doi:10.1088/2040-8978/17/2/025701.

    Article  ADS  Google Scholar 

  • Lohmann, A.W.: Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10, 2181–2186 (1993)

    Article  ADS  Google Scholar 

  • Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing, 1–100. Wiley, New York (2000)

    Google Scholar 

  • Pei, S.C., Hsue, W.L.: The multiple-parameter discrete fractional Fourier transform. IEEE Signal Process. Lett. 13, 329–332 (2006)

    Article  ADS  Google Scholar 

  • Pei, S.C., Hsue, W.L.: Random discrete fractional Fourier transform. IEEE Signal Process. Lett. 16, 1015–1018 (2009)

    Article  ADS  Google Scholar 

  • Pei, S.C., Yeh, M.H.: Improved discrete fractional Fourier transform. Opt. Lett. 22, 1047–1049 (1997)

    Article  ADS  Google Scholar 

  • Rodrigo, J.A., Alieva, T., Calvo, M.L.: Experimental implementation of the gyrator transform. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3135–3139 (2007)

    Article  ADS  Google Scholar 

  • Yang, X., Tan, Q., Wei, X., Xiang, Y., Yan, Y., Jin, G.: Improved fast fractional-Fourier transform algorithm. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21, 1677–1681 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, Z.-C.: New convolution structure for the linear canonical transform and its application in filter design. Optik 127, 5259–5263 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61571160, 61377016, 61575055 and 61575053), by Program for New Century Excellent Talents in University (No. NCET-12-0148), by the Fundamental Research Funds for the Central Universities (No. HIT.BRETIII.201406), the China Postdoctoral Science Foundation (Nos. 2013M540278 and 2015T80340), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, J., He, Q., Peng, Y. et al. A convolution-based fractional transform. Opt Quant Electron 48, 407 (2016). https://doi.org/10.1007/s11082-016-0685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0685-9

Keywords

Navigation