Abstract
In this paper, we present a conjugate gradient method for solving unconstrained optimization problems. Motivated by Perry conjugate gradient method and Dai-Liao method, an improved Perry update matrix is proposed to overcome the non-symmetric positive definite property of the Perry matrix. The parameter in the update matrix is determined by minimizing the condition number of the iterative matrix which can ensure the positive definite property. The obtained method can also be considered as a modified form of CG-DESCENT method with an adjusted term. Under some mild conditions, the presented method is global convergent. Numerical experiments under CUTEst environment show that the proposed algorithm is promising.
Similar content being viewed by others
References
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)
Li, J., Li, X., Yang, B., et al.: Segmentation-based image copy-move forgery detection scheme[J]. IEEE Trans. Inf. Forens. Secur. 10(3), 507–518 (2015)
Gu, B., Sheng, V.S., Tay, K.Y., et al.: Incremental support vector learning for ordinal regression[J]. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)
Xia, Z., Wang, X., Sun, X., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data[J]. IEEE Trans. Parallel Distrib. Syst. 27 (2), 340–352 (2016)
Pan, Z., Zhang, Y., Kwong, S.: Efficient motion and disparity estimation optimization for low complexity multiview video coding[J]. IEEE Trans. Broadcast. 61(2), 166–176 (2015)
Perry, A.: Technical note -a modified conjugate gradient algorithm[J]. Oper. Res. 26(6), 1073–1078 (1978)
Andrei, N.: Numerical comparison of conjugate gradient algorithms for unconstrained optimization. Stud. Inf. Control 16(4), 333–352 (2007)
Livieris, I.E., Pintelas, P.: A limited memory descent Perry conjugate gradient method[J]. Optim. Lett. 10(8), 1725–1742 (2016)
Livieris, I.E., Pintelas, P.: Globally convergent modified Perry’s conjugate gradient method. Appl. Math. Comput. 218(18), 9197–9207 (2012)
Livieris, I.E., Pintelas, P.: A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization. J. Comput. Appl. Math. 239, 396–405 (2013)
Liu, D., Xu, G.: Symmetric Perry conjugate gradient method. Comput. Optim. Appl. 56(2), 317–341 (2013)
Yu, G., Guan, L., Chen, W.: Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization. Optim. Methods Softw. 23(2), 275–293 (2008)
Dai, Y.H., Liao, L.Z.: New conjugacy conditions and related nonlinear conjugate gradient methods[J]. Appl. Math. Optim. 43(1), 87–101 (2001)
Andrei, N.: A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues[J]. Numer. Algor. 1–10 (2017)
Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices[J]. Eur. J. Oper. Res. 234(3), 625–630 (2014)
Babaie-Kafaki, S., Ghanbari, R.: A descent family of Dai-Liao conjugate gradient methods[J]. Optimi. Methods Softw. 29(3), 583–591 (2014)
Babaie-Kafaki, S., Ghanbari, R.: Two optimal Dai-Liao conjugate gradient methods[J]. Optimization 64(11), 2277–2287 (2015)
Reza Peyghami, M., Ahmadzadeh, H., Fazli, A.: A new class of efficient and globally convergent conjugate gradient methods in the Dai-Liao family[J]. Optim. Methods Softw. 30(4), 843–863 (2015)
Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search[J]. SIAM J. Optim. 16(1), 170–192 (2005)
Li, G., Tang, C., Wei, Z.: New conjugacy condition and related new conjugate gradient methods for unconstrained optimization[J]. J. Comput. Appl. Math. 202(2), 523–539 (2007)
Yuan, G.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems[J]. Optim. Lett. 3(1), 11–21 (2009)
Dai, Y.H., Kou, C.X.: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search[J]. SIAM J. Optim. 23(1), 296–320 (2013)
Andrei, N.: A simple three-term conjugate gradient algorithm for unconstrained optimization[J]. J. Comput. Appl. Math. 241, 19–29 (2013)
Andrei, N.: A new three-term conjugate gradient algorithm for unconstrained optimization[J]. Numer. Algor. 68(2), 305–321 (2015)
Andrei, N.: An adaptive conjugate gradient algorithm for large-scale unconstrained optimization[J]. J. Comput. Appl. Math. 292, 83–91 (2016)
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems, vol. 49. No. 1. NBS (1952)
Zoutendijk, G.: Nonlinear programming, computational methods[J]. Integer Nonlin. Program. 143(1), 37–86 (1970)
Nocedal, J.: Conjugate gradient methods and nonlinear optimization[J]. Linear Nonlin. Conj. Gradient-Related Methods, 9–23 (1996)
Hager, W.W., Zhang, H.: Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent[J]. ACM Trans. Math. Softw. (TOMS) 32(1), 113–137 (2006)
Bongartz, I., Conn, A.R., Gould, N., et al.: CUTE: Constrained and unconstrained testing environment[J]. ACM Trans. Math. Softw. (TOMS) 21(1), 123–160 (1995)
Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: A constrained and unconstrained testing environment, revisited[J]. ACM Trans. Math. Softw. (TOMS) 29(4), 373–394 (2003)
Hager, W.W., Zhang, H.: The limited memory conjugate gradient method[J]. SIAM J. Optim. 23(4), 2150–2168 (2013)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles[J]. Math. Program. 91(2), 201–213 (2002)
Acknowledgments
Guangxi Universities Foundation Grant no: KY2015YB268.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yao, S., He, D. & Shi, L. An improved Perry conjugate gradient method with adaptive parameter choice. Numer Algor 78, 1255–1269 (2018). https://doi.org/10.1007/s11075-017-0422-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0422-x