Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An improved Perry conjugate gradient method with adaptive parameter choice

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present a conjugate gradient method for solving unconstrained optimization problems. Motivated by Perry conjugate gradient method and Dai-Liao method, an improved Perry update matrix is proposed to overcome the non-symmetric positive definite property of the Perry matrix. The parameter in the update matrix is determined by minimizing the condition number of the iterative matrix which can ensure the positive definite property. The obtained method can also be considered as a modified form of CG-DESCENT method with an adjusted term. Under some mild conditions, the presented method is global convergent. Numerical experiments under CUTEst environment show that the proposed algorithm is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  2. Li, J., Li, X., Yang, B., et al.: Segmentation-based image copy-move forgery detection scheme[J]. IEEE Trans. Inf. Forens. Secur. 10(3), 507–518 (2015)

    Article  Google Scholar 

  3. Gu, B., Sheng, V.S., Tay, K.Y., et al.: Incremental support vector learning for ordinal regression[J]. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)

    Article  MathSciNet  Google Scholar 

  4. Xia, Z., Wang, X., Sun, X., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data[J]. IEEE Trans. Parallel Distrib. Syst. 27 (2), 340–352 (2016)

    Article  Google Scholar 

  5. Pan, Z., Zhang, Y., Kwong, S.: Efficient motion and disparity estimation optimization for low complexity multiview video coding[J]. IEEE Trans. Broadcast. 61(2), 166–176 (2015)

    Article  Google Scholar 

  6. Perry, A.: Technical note -a modified conjugate gradient algorithm[J]. Oper. Res. 26(6), 1073–1078 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrei, N.: Numerical comparison of conjugate gradient algorithms for unconstrained optimization. Stud. Inf. Control 16(4), 333–352 (2007)

    Google Scholar 

  8. Livieris, I.E., Pintelas, P.: A limited memory descent Perry conjugate gradient method[J]. Optim. Lett. 10(8), 1725–1742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Livieris, I.E., Pintelas, P.: Globally convergent modified Perry’s conjugate gradient method. Appl. Math. Comput. 218(18), 9197–9207 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Livieris, I.E., Pintelas, P.: A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization. J. Comput. Appl. Math. 239, 396–405 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, D., Xu, G.: Symmetric Perry conjugate gradient method. Comput. Optim. Appl. 56(2), 317–341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu, G., Guan, L., Chen, W.: Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization. Optim. Methods Softw. 23(2), 275–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, Y.H., Liao, L.Z.: New conjugacy conditions and related nonlinear conjugate gradient methods[J]. Appl. Math. Optim. 43(1), 87–101 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Andrei, N.: A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues[J]. Numer. Algor. 1–10 (2017)

  15. Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices[J]. Eur. J. Oper. Res. 234(3), 625–630 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Babaie-Kafaki, S., Ghanbari, R.: A descent family of Dai-Liao conjugate gradient methods[J]. Optimi. Methods Softw. 29(3), 583–591 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Babaie-Kafaki, S., Ghanbari, R.: Two optimal Dai-Liao conjugate gradient methods[J]. Optimization 64(11), 2277–2287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reza Peyghami, M., Ahmadzadeh, H., Fazli, A.: A new class of efficient and globally convergent conjugate gradient methods in the Dai-Liao family[J]. Optim. Methods Softw. 30(4), 843–863 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search[J]. SIAM J. Optim. 16(1), 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, G., Tang, C., Wei, Z.: New conjugacy condition and related new conjugate gradient methods for unconstrained optimization[J]. J. Comput. Appl. Math. 202(2), 523–539 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, G.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems[J]. Optim. Lett. 3(1), 11–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dai, Y.H., Kou, C.X.: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search[J]. SIAM J. Optim. 23(1), 296–320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Andrei, N.: A simple three-term conjugate gradient algorithm for unconstrained optimization[J]. J. Comput. Appl. Math. 241, 19–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Andrei, N.: A new three-term conjugate gradient algorithm for unconstrained optimization[J]. Numer. Algor. 68(2), 305–321 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Andrei, N.: An adaptive conjugate gradient algorithm for large-scale unconstrained optimization[J]. J. Comput. Appl. Math. 292, 83–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems, vol. 49. No. 1. NBS (1952)

  27. Zoutendijk, G.: Nonlinear programming, computational methods[J]. Integer Nonlin. Program. 143(1), 37–86 (1970)

    MathSciNet  MATH  Google Scholar 

  28. Nocedal, J.: Conjugate gradient methods and nonlinear optimization[J]. Linear Nonlin. Conj. Gradient-Related Methods, 9–23 (1996)

  29. Hager, W.W., Zhang, H.: Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent[J]. ACM Trans. Math. Softw. (TOMS) 32(1), 113–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bongartz, I., Conn, A.R., Gould, N., et al.: CUTE: Constrained and unconstrained testing environment[J]. ACM Trans. Math. Softw. (TOMS) 21(1), 123–160 (1995)

    Article  MATH  Google Scholar 

  31. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: A constrained and unconstrained testing environment, revisited[J]. ACM Trans. Math. Softw. (TOMS) 29(4), 373–394 (2003)

    Article  MATH  Google Scholar 

  32. Hager, W.W., Zhang, H.: The limited memory conjugate gradient method[J]. SIAM J. Optim. 23(4), 2150–2168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles[J]. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Guangxi Universities Foundation Grant no: KY2015YB268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwei Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., He, D. & Shi, L. An improved Perry conjugate gradient method with adaptive parameter choice. Numer Algor 78, 1255–1269 (2018). https://doi.org/10.1007/s11075-017-0422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0422-x

Keywords

Navigation