Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Reconfigurable fault-tolerant attitude tracking for spacecraft with unknown nonlinear dynamics using neural network estimators with learning-type weight updating

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study investigated the problem of robust and reconfigurable attitude-tracking control with fault-tolerant capability for spacecraft under nonlinear inertia uncertainties, disturbance torques, and actuator faults. To improve the accuracy of reconstructing actuator faults, we proposed a nonlinear learning neural network estimator that combines the radial basis function neural network (RBFNN) model with an iterative learning algorithm, enabling the arbitrary precision of actuator fault reconstruction. A P-type iterative learning algorithm successively updates the RBFNN’s weight with a low computational load. Moreover, to ensure fast and robust spacecraft attitude fault-tolerant tracking, the learning RBFNN was integrated into a sliding mode control (SMC) scheme, leading to a learning neural-network SMC (LNNSMC), designed using the separation principle. The learning RBFNN was utilized to approximate and compensate for unknown nonlinear attitude dynamics online. Finally, the superiority of the presented method was demonstrated through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Xiao, B., Zhao, S., Chen, Z., Cao, L.: Prescribed convergence time control of spacecraft attitude dynamics with parametric uncertainty. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08695-1

    Article  Google Scholar 

  2. Shao, X.D., Hu, Q.L., Shi, Y., Zhang, Y.M.: Fault-tolerant control for full-state error constrained attitude tracking of uncertain spacecraft. Automatica 151, 110907 (2023)

    Article  MathSciNet  Google Scholar 

  3. Cao, Q., Li, H., Jia, Q., Ma, C., Zhang, Y.: Multi-observer approach for tracking control of flexible spacecraft using exponential mapping of SE(3). Nonlinear Dyn. 111(6), 5329–5343 (2023)

    Article  Google Scholar 

  4. Tian, Y., Hu, Q.L., Shao, X.D.: Adaptive fault-tolerant control for attitude reorientation under complex attitude constraints. Aerosp. Sci. Technol. 121, 107332 (2022)

    Article  Google Scholar 

  5. Chen, T., Chen, H.: Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks. IEEE Trans. Neural Netw. 6(4), 904–910 (1995)

    Article  Google Scholar 

  6. Battilotti, S., Santis, A.D.: Robust output feedback control of nonlinear stochastic systems using neural networks. IEEE Trans. Neural Netw. 14(1), 103–116 (2003)

    Article  Google Scholar 

  7. Zou, Y.: Attitude tracking control for spacecraft with robust adaptive RBFNN augmenting sliding mode control. Aerosp. Sci. Technol. 56, 197–204 (2016)

    Article  Google Scholar 

  8. Zhou, N., Kawano, Y., Cao, M.: Neural network-based adaptive control for spacecraft under actuator failures and input saturations. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3696–3710 (2020)

    Article  MathSciNet  Google Scholar 

  9. Wang, X.H., Tan, C.P., Wu, F., Wang, J.D.: Fault-tolerant attitude control for rigid spacecraft without angular velocity measurements. IEEE Trans. Cybern. 51(3), 1216–1229 (2021)

    Article  Google Scholar 

  10. Guo, X.G., Tian, M.E., Li, Q., Ahn, C.K., Yang, Y.H.: Multiple-fault diagnosis for spacecraft attitude control systems using RBFNN-based observers. Aerosp. Sci. Technol. 106, 106195 (2020)

    Article  Google Scholar 

  11. Zhang, C.X., Dai, M.Z., Wu, J., Xiao, B., Li, B., Wang, M.J.: Neural-networks and event-based fault-tolerant control for spacecraft attitude stabilization. Aerosp. Sci. Technol. 114, 106746 (2021)

    Article  Google Scholar 

  12. Yu, B., Du, H.B., Ding, L.J., Wu, D., Li, H.: Neural network-based robust finite-time attitude stabilization for rigid spacecraft under angular velocity constraint. Neural Comput. Appl. 34(7), 5107–5117 (2022)

    Article  Google Scholar 

  13. Zhang, C.X., Ahn, C.K., Wu, J., He, W., Jiang, Y., Liu, M.: Robustification of learning observers to uncertainty identification via time-varying learning intensity. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 1292–1296 (2022)

    Google Scholar 

  14. Jia, Q., Gao, J., Zhang, C., Zheng, Z.: Robust relative orbit synchronization for spacecraft cluster: a distributed learning sliding mode control approach. Trans. Inst. Measure. Control (2023). https://doi.org/10.1177/01423312231153675

    Article  Google Scholar 

  15. Zhang, C., Ahn, C.K., Wu, J., He, W.: Online-learning control with weakened saturation response to attitude tracking: a variable learning intensity approach. Aerosp. Sci. Technol. 117, 106981 (2021)

    Article  Google Scholar 

  16. Wu, S.N., Wen, S.H.: Robust h output feedback control for attitude stabilization of a flexible spacecraft. Nonlinear Dyn. 84(1), 405–412 (2016)

    Article  MathSciNet  Google Scholar 

  17. Wang, Z., Li, Y.: Rigid spacecraft nonlinear robust H attitude controller design under actuator misalignments. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08620-6

    Article  Google Scholar 

  18. Wang, Z., Su, Y.X., Zhang, L.Y.: A new nonsingular terminal sliding mode control for rigid spacecraft attitude tracking. J. Dyn. Syst. Measure. Control, Trans. ASME 140(5), 051006 (2018)

    Article  Google Scholar 

  19. Wie, B.: Vehicle Dynamics and Control. AIAA, Reston (2008)

    Google Scholar 

  20. Hughes, P.C.: Spacecraft Attitude Dynamics. Dover Publications, Mineola (2004)

    Google Scholar 

  21. Wang, C.L., Guo, L., Wen, C.Y., Hu, Q.L., Qiao, J.Z.: Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults. IEEE Trans. Ind. Electron. 67(3), 2241–2250 (2020)

    Article  Google Scholar 

  22. Jia, Q.X., Li, H.Y., Chen, X.Q., Zhang, Y.C.: Observer-based reaction wheel fault reconstruction for spacecraft attitude control systems. Aircr. Eng. Aerosp. Technol. 91(10), 1268–1277 (2019)

    Article  Google Scholar 

  23. Hu, Q.L., Zhang, X.X., Niu, G.L.: Observer-based fault tolerant control and experimental verification for rigid spacecraft. Aerosp. Sci. Technol. 92, 373–386 (2019)

    Article  Google Scholar 

  24. Li, B., Hu, Q.L., Yu, Y.B., Ma, G.F.: Observer-based fault-tolerant attitude control for rigid spacecraft. IEEE Trans. Aerosp. Electr. Syst. 53(5), 2572–2582 (2017)

    Article  Google Scholar 

  25. Amrr, S.M., Nabi, M.: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach. Adv. Space Res. 66(7), 1659–1671 (2020)

    Article  Google Scholar 

  26. Jia, Q., Ma, R., Zhang, C., Varatharajoo, R.: Spacecraft attitude fault-tolerant stabilization against loss of actuator effectiveness: a novel iterative learning sliding mode approach. Adv. Space Res. (2023). https://doi.org/10.1016/j.asr.2023.02.041

    Article  Google Scholar 

  27. Zou, A.M., Kumar, K.D.: Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network. Acta Astronaut. 66(5–6), 769–779 (2010)

    Article  Google Scholar 

  28. Ye, D., Xiao, Y., Sun, Z.W., Xiao, B.: Neural network based finite-time attitude tracking control of spacecraft with angular velocity sensor failures and actuator saturation. IEEE Trans. Ind. Electron. 69(4), 4129–4136 (2022)

    Article  Google Scholar 

  29. Li, H.Y., Jia, Q.X., Ma, R., Chen, X.Q.: Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems. Aircr. Eng. Aerosp. Technol. 93(7), 1145–1155 (2021)

    Article  Google Scholar 

  30. Zhang, A.H., Hu, Q.L., Zhang, Y.M.: Observer-based attitude control for satellite under actuator fault. J. Guid. Control. Dyn. 38(4), 806–811 (2015)

    Article  Google Scholar 

  31. Gao, Z.F., Cheng, P., Qian, M.S., Jiang, G.P., Lin, J.X.: Active fault-tolerant control approach design for rigid spacecraft with multiple actuator faults. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 232(10), 1365–1378 (2018)

    Google Scholar 

  32. Shen, Q., Yue, C.F., Goh, C.H.: Fault modeling, estimation, and fault-tolerant steering logic design for single-gimbal control moment gyro. IEEE Trans. Control Syst. Technol. 29(1), 428–435 (2021)

    Article  Google Scholar 

  33. Xia, K., Huo, W.: Disturbance observer based fault-tolerant control for cooperative spacecraft rendezvous and docking with input saturation. Nonlinear Dyn. 88(4), 2735–2745 (2017)

    Article  Google Scholar 

  34. Hu, H., Liu, L., Wang, Y.J., Cheng, Z.T., Luo, Q.Q.: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts. Aerosp. Sci. Technol. 98, 105706 (2020)

    Article  Google Scholar 

  35. Li, B., Hu, Q.L., Ma, G.F., Yang, Y.S.: Fault-tolerant attitude stabilization incorporating closed-loop control allocation under actuator failure. IEEE Trans. Aerosp. Electron. Syst. 55(4), 1989–2000 (2019)

  36. Zhu, X.Y., Chen, J.L., Zhu, Z.H.: Adaptive learning observer for spacecraft attitude control with actuator fault. Aerosp. Sci. Technol. 108, 106389 (2021)

  37. Chunodkar, A.A., Akella, M.R.: Switching angular velocity observer for rigid-body attitude stabilization and tracking control. J. Guid. Control. Dyn. 37(3), 869–878 (2014)

    Article  Google Scholar 

  38. Gui, H.C.: Observer-based fault-tolerant spacecraft attitude tracking using sequential Lyapunov analyses. IEEE Trans. Autom. Control 66(12), 6108–6114 (2021)

    Article  MathSciNet  Google Scholar 

  39. Zhao, X.Y., Zong, Q., Tian, B.L., Shao, S.K., You, M., Liu, W.J.: Adaptive multivariable finite-time continuous fault-tolerant control of rigid spacecraft. Int. J. Robust Nonlinear Control 29(10), 2927–2940 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61703276, 12172168), the National Key R & D Program of China (2022YFB3902801), the Fundamental Research Funds for the Central Universities (No. JUSRP123063), and the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. NRF-2020R1A2C1005449).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingxian Jia or Choon Ki Ahn.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Zhang, C., Ahn, C.K. et al. Reconfigurable fault-tolerant attitude tracking for spacecraft with unknown nonlinear dynamics using neural network estimators with learning-type weight updating. Nonlinear Dyn 112, 8213–8227 (2024). https://doi.org/10.1007/s11071-024-09502-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09502-1

Keywords

Navigation