Abstract
With the recent success in using time series data, many nonlinear identification tools have emerged to learn the nonlinear dynamics of unknown physical systems. However, if the nonlinearity level is very high or too small, in many cases, the identified model fails to precisely learn the actual dynamics of the system, which in turn makes the closed-loop control more challenging. Finding out a suitable system identification routine for identifying a given nonlinear system based on the nonlinearity level is still cryptic. In this article, we propose an integrated framework ‘System identification in coherence with nonlinearity measure’ that involves three reliable nonlinear system identification methods and a ‘Convergence area-based Nonlinear Metric’ (CANM). The nonlinear identification methods in order are (a) An enhanced key term-based Sparse Identification of Nonlinear Dynamics with control (kSINDYc) (b) Standard Nonlinear Least Square method (NL2SQ) and (c) Neural Network-based Nonlinear Auto Regressive Exogenous input (N3ARX) schemes. This article revolves around the central idea of developing kSINDYc to capture the nonlinear dynamics of high nonlinear systems. Furthermore, the nonlinear metric CANM computes the process nonlinearity in the dynamic physical systems that classify the unknown process under mild, medium or highly nonlinear categories. Simulation studies are carried out on five industrial systems with divergent nonlinear dynamics. The user can make a flawless choice of a specific identification method suitable for a given process from CANM.
Similar content being viewed by others
Data availability
The data analyzed during the current study are available from the corresponding author on reasonable request.
Change history
06 March 2024
A Correction to this paper has been published: https://doi.org/10.1007/s11071-024-09434-w
References
Schoukens, J., Ljung, L.: Nonlinear system identification: a user-oriented road map. IEEE Control. Syst. Mag. 39(6), 28–99 (2019). https://doi.org/10.1109/MCS.2019.2938121
Xavier, J., Patnaik, S.K., Panda, R.C.: Process modeling, identification methods, and control schemes for nonlinear physical systems–a comprehensive review. ChemBioEng Rev. 8(4), 1–21 (2021). https://doi.org/10.1002/cben.202000017
Sadeqi, A., Moradi, S., Shirazi, K.H.: Nonlinear subspace system identification based on output-only measurements. J. Franklin Inst. 357(17), 12904–12937 (2020). https://doi.org/10.1016/j.jfranklin.2020.08.008
Xu, H., Ding, F., Yang, E.: Modeling a nonlinear process using the exponential autoregressive time series model. Nonlinear Dyn. 95(3), 2079–2092 (2019). https://doi.org/10.1007/s11071-018-4677-0
Xu, L.: The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1687814017730003 (2017). https://doi.org/10.1177/1687814017730003
Xiong, W., Yang, X., Huang, B., Xu, B.: Multiple-model based linear parameter varying time-delay system identification with missing output data using an expectation-maximization algorithm. Ind. Eng. Chem. Res. 53(27), 11074–11083 (2014). https://doi.org/10.1021/ie500175r
Zhang, X., Ding, F., Alsaadi, F.E., Hayat, T.: Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017). https://doi.org/10.1007/s11071-017-3594-y
Zhang, T., Lu, Z.R., Liu, J.K., Liu, G.: Parameter identification of nonlinear systems with time-delay from time-domain data. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06454-8
Mani, A.K., Narayanan, M.D., Sen, M.: Parametric identification of fractional-order nonlinear systems. Nonlinear Dyn. 93(2), 945–960 (2018). https://doi.org/10.1007/s11071-018-4238-6
Kazemi, M., Arefi, M.M.: A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 67, 382–388 (2017). https://doi.org/10.1016/j.isatra.2016.12.002
Yu, F., Mao, Z., Jia, M.: Recursive identification for Hammerstein-Wiener systems with dead-zone input nonlinearity. J. Process. Control. 23(8), 1108–1115 (2013). https://doi.org/10.1016/j.jprocont.2013.06.014
Mauroy, A., Goncalves, J.: Koopman-based lifting techniques for nonlinear systems identification. IEEE Trans. Autom. Control 65(6), 2550–2565 (2019). https://doi.org/10.1109/TAC.2019.2941433
Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.: Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3), 657–682 (2014). https://doi.org/10.1016/j.automatica.2014.01.001
Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99(2), 1709–1761 (2020). https://doi.org/10.1007/s11071-019-05430-7
Bolourchi, A., Masri, S.F., Aldraihem, O.J.: Development and application of computational intelligence approaches for the identification of complex nonlinear systems. Nonlinear Dyn. 79(2), 765–786 (2015). https://doi.org/10.1007/s11071-014-1702-9
Vafamand, N., Arefi, M.M., Khayatian, A.: Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter. ISA Trans. 74, 134–143 (2018). https://doi.org/10.1016/j.isatra.2018.02.005
Rafiei, H., Akbarzadeh-T, M.R.: Reliable fuzzy neural networks for systems identification and control. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3222036
Du, J., Johansen, T.A.: Control-relevant nonlinearity measure and integrated multi-model control. J. Process. Control. 57, 127–139 (2017). https://doi.org/10.1016/j.jprocont.2017.07.001
Jiang, M., Zhang, W., Lu, Q.: A nonlinearity measure-based damage location method for beam-like structures. Measurement 146, 571–581 (2019). https://doi.org/10.1016/j.measurement.2019.06.049
Jiang, M., Wang, D., Kuang, Y., Mo, X.: A bicoherence-based nonlinearity measurement method for identifying the location of breathing cracks in blades. Int. J. Non-Linear Mech. 135, 103751 (2021). https://doi.org/10.1016/j.ijnonlinmec.2021.103751
Zhao, N., Shi, P., Xing, W., Chambers, J.: Observer-based event-triggered approach for stochastic networked control systems under denial of service attacks. IEEE Trans. Control Netw. Syst. 8(1), 158–167 (2020). https://doi.org/10.1109/TCNS.2020.3035760
Liu, Y., Zhu, Q.: Event-triggered adaptive neural network control for stochastic nonlinear systems with state constraints and time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 34(4), 1932–1944 (2021). https://doi.org/10.1109/TNNLS.2021.3105681
Xavier, J., Patnaik, S.K., Panda, R.C.: Nonlinear measure for nonlinear dynamic processes using convergence area: typical case studies. J. Comput. Nonlinear Dyn. 16(5), 051002 (2021). https://doi.org/10.1115/1.4050553
Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse identification of nonlinear dynamics with control (SINDYc). IFAC-Papers OnLine 49(18), 710–715 (2016). https://doi.org/10.1016/j.ifacol.2016.10.249
Du, J., Johansen, T.A.: Integrated multimodel control of nonlinear systems based on gap metric and stability margin. Ind. Eng. Chem. Res. 53(24), 10206–10215 (2014). https://doi.org/10.1021/ie500035p
Hahn, J., Edgar, T.F.: A gramian based approach to nonlinearity quantification and model classification. Ind. Eng. Chem. Res. 40(24), 5724–5731 (2001). https://doi.org/10.1021/ie010155v
Alanqar, A., Durand, H., Christofides, P.D.: On identification of well-conditioned nonlinear systems: application to economic model predictive control of nonlinear processes. AIChE J. 61(10), 3353–3373 (2015). https://doi.org/10.1002/aic.14942
Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. London Ser. A 474(22), 20180335 (2018)
Mangan, N.M., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2(1), 52–63 (2016). https://doi.org/10.1109/TMBMC.2016.2633265
Tang, X., Dong, Y.: Expectation maximization based sparse identification of cyberphysical system. Int. J. Robust Nonlinear Control 31(6), 2044–2060 (2021). https://doi.org/10.1002/rnc.5325
Champion, K., Zheng, P., Aravkin, A.Y., Brunton, S.L., Kutz, J.N.: A unified sparse optimization framework to learn parsimonious physics-informed models from data. IEEE Access. 8, 169259–169271 (2020). https://doi.org/10.1109/ACCESS.2020.3023625
Zhang, L., Schaeffer, H.: On the convergence of the SINDy algorithm. Multiscale Model. Simul. 17(3), 948–972 (2019). https://doi.org/10.1137/18M1189828
Lin, M., Cheng, C., Peng, Z., Dong, X., Qu, Y., Meng, G.: Nonlinear dynamical system identification using the sparse regression and separable least squares methods. J. Sound Vib. 505, 116141 (2021). https://doi.org/10.1016/j.jsv.2021.116141
Yin, Q., Zhou, L., Wang, X.: Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation. Earthquake Eng. Eng. Vibr. 9(3), 375–383 (2010). https://doi.org/10.1007/s11803-010-0022-4
Transtrum, M.K., Sethna, J.P.: Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization (2012) arXiv preprint
Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter identification for symbolic regression using nonlinear least squares. Genet. Program. Evolv. Mach. 21(3), 471–501 (2020). https://doi.org/10.1007/s10710-019-09371-3
Liu, H., Song, X.: Nonlinear system identification based on NARX network. In 2015 10th Asian Control Conference (ASCC) 1-6. IEEE (2015). https://doi.org/10.1109/ASCC.2015.7244449
Subudhi, B., Jena, D.: A differential evolution based neural network approach to nonlinear system identification. Appl. Soft Comput. 11(1), 861–871 (2011). https://doi.org/10.1016/j.asoc.2010.01.006
Taghavifar, H.: Neural network autoregressive with exogenous input assisted multi-constraint nonlinear predictive control of autonomous vehicles. IEEE Trans. Veh. Technol. 68(7), 6293–6304 (2019). https://doi.org/10.1109/TVT.2019.2914027
Cheng, L., Liu, W., Hou, Z.G., Yu, J., Tan, M.: Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Trans. Ind. Electron. 62(12), 7717–7727 (2015). https://doi.org/10.1109/TIE.2015.2455026
Sahoo, H.K., Dash, P.K., Rath, N.P.: NARX model based nonlinear dynamic system identification using low complexity neural networks and robust H∞ filter. Appl. Soft Comput. 13(7), 3324–3334 (2013). https://doi.org/10.1016/j.asoc.2013.02.007
Saki, S., Fatehi, A.: Neural network identification in nonlinear model predictive control for frequent and infrequent operating points using nonlinearity measure. ISA Trans. 97, 216–229 (2020). https://doi.org/10.1016/j.isatra.2019.08.001
Bistak, P., Huba, M.: Three-tank laboratory for input saturation control based on matlab. IFAC-Papers Online 49(6), 207–212 (2016). https://doi.org/10.1016/j.ifacol.2016.07.178
Pottman, M., Seborg, D.E.: Identification of non-linear processes using reciprocal multiquadric functions. J. Process. Control. 2(4), 189–203 (1992). https://doi.org/10.1016/0959-1524(92)80008-L
Indumathy, M., Sobana, S., Panda, R.C.: Modeling of fouling in a plate heat exchanger with high temperature pasteurisation process. Appl. Therm. Eng. 189, 116674 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116674
Alvarez-Ramirez, J., Cervantes, I., Femat, R.: Robust controllers for a heat exchanger. Ind. Eng. Chem. Res. 36(2), 382–388 (1997). https://doi.org/10.1109/PC.2015.7169947
Bequette, B.W.: Process control: modeling, design, and simulation. Prentice Hall Professional, New Jersey (2003)
Sobana, S., Panda, R.C.: Control of pH process using double-control scheme. Nonlinear Dyn. 67, 2266–2277 (2012). https://doi.org/10.1007/s11071-011-0144-x
Atanu, P., Panda, R.C.: Adaptive nonlinear model-based control scheme implemented on the nonlinear processes. Nonlinear Dyn. 91, 2735–2753 (2018). https://doi.org/10.1007/s11071-017-4043-7
Zang, N., Qian, X.M., Shu, C.M., Wu, D.: Parametric sensitivity analysis for thermal runaway in semi-batch reactors: application to cyclohexanone peroxide reactions. J. Loss Prev. Process Ind. 70, 104436 (2021). https://doi.org/10.1016/j.jlp.2021.104436
Acknowledgements
The first author acknowledges the financial support ‘Anna Centenary Research Fellowship’ (ACRF) funded by Centre for Research, Anna University, Chennai, India to carry-out this study.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest. All the authors have consented for publication.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xavier, J., Patnaik, S.K. & Panda, R.C. Nonlinear system identification in coherence with nonlinearity measure for dynamic physical systems—case studies. Nonlinear Dyn 112, 6475–6501 (2024). https://doi.org/10.1007/s11071-023-09258-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-023-09258-0