Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

ELM with guaranteed performance for online approximation of dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an adaptive identification approach based on extreme learning machine (ELM), single hidden layer feedfoward neural networks, high-order neural networks (HONN), and adaptive control theory. Drawing on Lyapunov-like analysis employing Barbalat’s Lemma, the designed identifiers ensure the boundedness of all associated approximation errors and convergence of the residual state error, even in the presence of disturbances and unknown dynamics. Two cases are considered: a standard topology and a modified ELM with high-order regressor. Both with enhanced identification model and learning algorithms. Extensive simulations, to verify the theoretical results, and a comparative study, to show the performance of the proposed schemes, are performed. Simulation results depict that the HONN architecture combined with the ELM technique offers significant advantages over the standard one, insofar as faster training and lower computational burden are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ljung, L.: Perspectives on system identification. Ann. Rev. Control 34, 1–12 (2010)

    Article  Google Scholar 

  2. Sjöberg, J., Zhang, Q., Delyon, B., Glorennec, P.-Y., Hjalmarsson, H., Ljung, L., Benveniste, A., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31, 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fu, L., Li, P.: The research survey of system identification method. In: 5th IEEE International Conference on Intelligent Human–Machine Systems and Cybernetics, pp. 397–401 (2013)

  4. Kumar, N., Jha, G.K.: A time series ANN approach for weather forecasting. Int. J. Control Theory Comput. Model 3, 19–25 (2013)

    Article  Google Scholar 

  5. Liu, G.: Nonlinear Identification and Control: A Neural Network Approach. Springer, London (2001)

    Book  MATH  Google Scholar 

  6. Wang, C., Hill, D.J.: Learning from neural control. IEEE Trans. Neural Netw. 17, 130–146 (2006)

    Article  Google Scholar 

  7. Yazdizadeh, A., Khorasani, K., Patel, R.V.: Identification of a two-link flexible manipulator using adaptive time delay neural networks. IEEE Trans. Syst. Man Cybern. B 30, 165–172 (2000)

    Article  Google Scholar 

  8. He, W., Li, Y., Ge, W., Liu, Y.-J.: Model identification and control design for a humanoid robot. IEEE Trans. Syst. Man Cybern. 47, 45–57 (2017)

    Article  Google Scholar 

  9. Yang, C., Huang, K., Li, Y., Su, C.-Y.: Haptic identification by ELM-controlled uncertain manipulator. IEEE Trans. Syst. Man Cybern. 99, 1–12 (2017)

    Google Scholar 

  10. Lu, J., Huang, J., Lu, F.: Time series prediction based on adaptive weight online sequential extreme learning machine. Appl. Sci. 217, 1–14 (2017)

    Article  Google Scholar 

  11. Huang, F., Huang, J., Jiang, S., Zhou, C.: Ladslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng. Geol. 218, 173–186 (2017)

    Article  Google Scholar 

  12. Henríquez, P.A., Ruz, G.A.: Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers. Neurocomputing 226, 109–116 (2017)

    Article  Google Scholar 

  13. Wang, S., Wang, W., Tang, Y., Liu, F., Guan, X.: Identification of chaotic system using Hammerstein-ELM model. Nonlinear Dyn. 81, 1081–1095 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gastaldo, P., Bisio, F., Gianoglio, C., Ragusa, E., Zunino, R.: Learning with similarity functions: a novel design for the extreme learning machine. Neurocomputing 261, 37–49 (2017)

  15. Huang, G., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  16. Huang, G., Ding, X., Zhou, H., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. 42, 513–529 (2012)

    Article  Google Scholar 

  17. Huang, G., Wang, D.H., Luan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2, 107–122 (2011)

    Article  Google Scholar 

  18. Zhao, G., Shen, Z., Miao, C., Man, Z.: On improving the conditioning of extreme learning machine: a linear case. In: 7th International Conference on Information Communications and Signal Processing, pp. 1–5 (2009)

  19. Janakiraman, V.M., Assanis, D.: Lyapunov Method Based Online Identification of Nonlinear Systems Using Extreme Learning Machines. Computing Research Repository (CoRR), pp. 1–8. arXiv:1211.1441 (2012)

  20. Duan, J., Ou, Y., Hu, J., Wang, Z., Jin, S., Xu, C.: Fast and stable learning of dynamical systems based on extreme learning machine. IEEE Trans. Syst. Man Cybern. 99, 1–11 (2017)

    Google Scholar 

  21. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Dover Publications, New York (2012)

    MATH  Google Scholar 

  22. Vargas, J.A.R., Hemerly, E.M., Villarreal, E.R.L.: Stability analysis of a neuro-identification scheme with asymptotic convergence. Int. J. Artif. Intell. Appl. 3, 35–50 (2012)

    Google Scholar 

  23. Grzeidak, E., Vargas, J.A.R., Alfaro, S.C.A.: Online neuro-identification of nonlinear systems using extreme learning machine. In: International Joint Conference on Neural Networks (IJCNN), pp. 2923–2930 (2016)

  24. Yu, W., Poznyak, A.S., Li, X.: Multilayer dynamic neural networks for non-linear system on-line identification. Int. J. Control 74, 1858–1864 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, G., Babri, H.A.: Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear. IEEE Trans. Neural Netw. 17, 879–892 (1998)

    Article  Google Scholar 

  26. Wang, Y., Cao, F., Yuan, Y.: A study on effectiveness of extreme learning machine. Neurocomputing 74, 2483–2490 (2011)

    Article  Google Scholar 

  27. Ding, S., Zhao, H., Zhang, Y., Xu, X., Nie, R.: Extreme learning machine: algorithm, theory and applications. Artif. Intell. Rev. 44, 103–115 (2015)

    Article  Google Scholar 

  28. Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control. Kluwer, Boston (2001)

    MATH  Google Scholar 

  29. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  30. Funahashi, K.-I.: On the approximate realization of continuous mappings by neural networks. IEEE Int. Conf. Neural Netw. 1, 183–192 (1989)

    Article  Google Scholar 

  31. Paretto, P., Niez, J.: Long term memory storage capacity of multiconnected neural networks. Biol. Cybern. 54, 53–63 (1986)

    Article  MATH  Google Scholar 

  32. Giles, C., Maxwell, T.: Learning, invariance, and generalization in higher order neural networks. Appl. Opt. 26, 4972–4978 (1987)

    Article  Google Scholar 

  33. Kosmatopoulos, E.B., Polycarpou, M.M., Christodoulou, M.A.: Higher-order neural network structures for identification of dynamical systems. IEEE Trans. Neural Netw. 6, 422–431 (1995)

    Article  Google Scholar 

  34. Vargas, J.A.R., Hemerly, E.M.: Neural adaptive observer with asymptotic convergence in the presence of time-varying parameters and disturbances. Sba Controle Autom. (in Portuguese) 19, 18–29 (2008)

    Article  Google Scholar 

  35. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall International, Englewood Cliffs (1991)

    MATH  Google Scholar 

  36. Khalil, H.K.: Nonlinear Systems. Prentice-Hall International, Englewood Cliffs (2002)

    MATH  Google Scholar 

  37. De la Rosa, E., Yu, W., Li, X.: Nonlinear system modeling with deep neural networks and autoencoders algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1–8 (2016)

  38. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2013)

    MATH  Google Scholar 

  39. L, J., Chen, D., Celikovsky, S.: Bridge the gap between the Lorenz system and Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn. 67, 2171–2182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mahmoud, E.E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Comput. Model. 55, 1951–1962 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson Grzeidak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzeidak, E., Vargas, J.A.R. & Alfaro, S.C.A. ELM with guaranteed performance for online approximation of dynamical systems. Nonlinear Dyn 91, 1587–1603 (2018). https://doi.org/10.1007/s11071-017-3966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3966-3

Keywords

Navigation