Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we focus on the construction of rogue wave solutions for the (2+1)-dimensional derivative nonlinear Schrödinger equation. The N-order generalized Darboux transformation is obtained, and the determinant form of N-order rogue waves is also presented by taking limit on the classical Darboux transformation. On the plane wave solution background, two different kinds of rogue wave solutions (linear rogue wave and parabolic rogue wave) are constructed successively. The characteristics of two types of rogue waves are analyzed by some figures and physical qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B-Fluids 22, 603–634 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  MATH  Google Scholar 

  3. Broad, W.J.: Rogue Giants Sea. The New York Times, New York (2006)

    Google Scholar 

  4. Akhmediev, N., Pelinovsky, E.: Editorial-introductory rematrks on discussion debate rogue waves-towards a unifying concept. Eur. Phys. J. Spec. Top. 185, 1–4 (2010)

    Article  Google Scholar 

  5. Osborne, A.R.: Nonlinear Ocean Waves. Academic Press, New York (2009)

    Google Scholar 

  6. Pelinovsky, E., Kharif, C.: Extreme Ocean Waves. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  7. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  8. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–U7 (2007)

    Article  Google Scholar 

  9. Kibler, B., Fatome, J., Finot, C., Millot, G.: The peregrine soliton in nonlinear fibre optics. Etal. Nat. Phys. 6, 790–795 (2010)

    Article  Google Scholar 

  10. Bailung, H., Sharma, S.K., Nakamura, Y.: Observations of peregrine solitons in a multicomponent plasma with negative lons. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  11. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., McClintock, P.V.E.: Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101, 065303 (2008)

    Article  Google Scholar 

  13. Stenflo, L., Marklund, M.: Rogue waves in the atmosphere. J. Plasma Phys. 76, 293–295 (2010)

    Article  Google Scholar 

  14. Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375, 4274–4279 (2011)

    Article  MATH  Google Scholar 

  15. Lü, X., Peng, M.S.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications. Nonlinear Dyn. 73, 405–410 (2013)

  16. Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  17. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons, from Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  18. Barnett, M.P., Capitani, J.F., Von Zur Gathen, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quantum Chem. 100, 80–104 (2004)

    Article  Google Scholar 

  19. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  20. Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)

    Article  MathSciNet  Google Scholar 

  21. Qi, F.H., Ju, H.M., Meng, X.H., Li, J.: Conservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrödinger equations with varable coefficients in nonlinear optics. Nonlinear Dyn. 77, 1331–1337 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, H.H., Zhao, X.J., Hao, H.Q.: Breather-to-soliton conversions and nonlinear wave interactions in a coupled Hirota system. Appl. Math. Lett. 61, 8–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    Article  MathSciNet  Google Scholar 

  24. Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    Article  MATH  Google Scholar 

  25. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  26. Guo, B.L., Ling, L.M., Liu, Q.P.: High-order solutions and generlized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wen, L.L., Zhang, H.Q.: Darboux transformation and soliton solutions of the (2+1)-dimensional derivative nonlinear Schrödinger hierarchy. Nonlinear Dyn. 84, 863–873 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Shanghai Leading Academic Discipline Project under Grant No. XTKX2012, by the Technology Research and Development Program of University of Shanghai for Science and Technology, by Hujiang Foundation of China under Grant No. B14005 and by the National Natural Science Foundation of China under Grant No. 11201302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Qiang Zhang.

Appendix: Choose the special solution

Appendix: Choose the special solution

Firstly, we need to solve the linear system (2) with the seed solution by the gauge transformation method:

$$\begin{aligned} \varPsi =M\varPhi , M=diag\left( e^{-\frac{i}{2}\theta },e^{\frac{i}{2}\theta }\right) , \end{aligned}$$
(5)

where

$$\begin{aligned} \varPsi =\left( \begin{array}{c} \varphi _{1} \\ \varphi _{2} \end{array}\right) , \varPhi =\left( \begin{array}{ll} \phi _{1} \\ \phi _{2} \end{array} \right) . \end{aligned}$$
(6)

Then, matrix \(\varPhi \) satifies the following linear system:

$$\begin{aligned}&\varPhi _{x}=N\varPhi ,\end{aligned}$$
(7a)
$$\begin{aligned}&\varPhi _{t}=\lambda ^{2}\varPhi _{y}-\nu N\varPhi , \end{aligned}$$
(7b)

where

$$\begin{aligned} N= & {} \frac{i}{2}\left( \begin{array}{cc} \lambda ^{2}+\mu &{} 2ia\lambda \\ -2ia\lambda &{} -\lambda ^{2}-\mu \end{array}\right) . \end{aligned}$$

And (7a) could be rewrited as

$$\begin{aligned}&2 a \lambda \phi _2 -i \left( \lambda ^2+\mu \right) \phi _1+2 \phi _{1x}=0,\end{aligned}$$
(8a)
$$\begin{aligned}&\quad -2 a \lambda \phi _1+i \left( \lambda ^2+\mu \right) \phi _2+2 \phi _{2x}=0. \end{aligned}$$
(8b)

By some calculations, i.e., (8a)+(8b) and (8a)-(8b), we could have

$$\begin{aligned} 2 \left( \phi _1+\phi _2\right) _{x}+\left[ 2 a \lambda +i \left( \lambda ^2+\mu \right) \right] \left( \phi _2-\phi _1\right) =0,\end{aligned}$$
(9a)
$$\begin{aligned} 2 \left( \phi _1-\phi _2\right) _{x}+\left[ 2 a \lambda -i \left( \lambda ^2+\mu \right) \right] \left( \phi _1+\phi _2\right) =0. \end{aligned}$$
(9b)

For convenience, \(\phi _2-\phi _1\) and \(\phi _2+\phi _1\) are marked as R and K, respectively. Therefore, from (9a) and (9b), we could deriving that

$$\begin{aligned} K&=a_1(t,y) e^{\frac{1}{2} x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}\\&\quad +a_2(t,y) e^{-\frac{1}{2} x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}},\\ R&=\frac{\sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}{2 a \lambda +i \left( \lambda ^2+\mu \right) }\nonumber \\&\quad \times \left[ a_2(t,y)e^{-\frac{1}{2} x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}\right. \\&\quad \left. -\,a_1(t,y) e^{\frac{1}{2}x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}\right] . \end{aligned}$$

Next, inserting K and R into \(\phi _2-\phi _1=R\) and \(\phi _2+\phi _1=K\), we could obtained

$$\begin{aligned} \phi _{1}= & {} \frac{\sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}+2 a \lambda +i \lambda ^2+i \mu }{2 \left[ 2 a \lambda +i \left( \lambda ^2+\mu \right) \right] }\\&\times e^{\frac{1}{2} x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}a_1(t,y)\\&- \frac{\sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}-2 a \lambda -i \lambda ^2-i \mu }{2 \left[ 2 a \lambda +i \left( \lambda ^2+\mu \right) \right] }\\&\times e^{-\frac{1}{2} x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}a_2(t,y),\\ \phi _{2}= & {} \frac{\sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}+2 a \lambda +i \lambda ^2+i \mu }{2 \left[ 2 a \lambda +i \left( \lambda ^2+\mu \right) \right] }\\&\times e^{-\frac{1}{2} x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}a_2(t,y)\\&-\frac{\sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}-2 a \lambda -i \lambda ^2-i \mu }{2 \left[ 2 a \lambda +i \left( \lambda ^2+\mu \right) \right] }\\&\times e^{\frac{1}{2} x \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}a_1(t,y). \end{aligned}$$

Now, simultaneous Eq. (7b) and \(\phi _{i}(i=1,2)\), \(a_1(t,y)\) and \(a_2(t,y)\) could be derived:

$$\begin{aligned} a_1(t,y)&=f\left( \lambda ^2 t+y\right) e^{-\frac{1}{2} \nu t \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}},\\ a_2(t,y)&=g\left( \lambda ^2 t+y\right) e^{\frac{1}{2} \nu t \sqrt{-4 a^2 \lambda ^2-\left( \lambda ^2+\mu \right) ^2}}, \end{aligned}$$

where \(f\left( \lambda ^2 t+y\right) \) and \(g\left( \lambda ^2 t+y\right) \) are arbitrary complex functions about \(\lambda ^2 t+y\). The different solutions could be derived by changing \(f\left( \lambda ^2 t+y\right) \) and \(g\left( \lambda ^2 t+y\right) \). Then, \(\varphi _{1}\) and \(\varphi _{2}\) could be derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, LL., Zhang, HQ. Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrödinger equation. Nonlinear Dyn 86, 877–889 (2016). https://doi.org/10.1007/s11071-016-2930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2930-y

Keywords

Navigation