Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Effect of strain hardening on the electromagnetic radiation during plastic deformation of metals and alloys beyond yield point

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a theoretical model to analyze and predict the electromagnetic radiation (EMR) during the strain hardening of metals with negligible Peierls stress. The model developed is validated by comparing it with the experimental results on the ASTM B265 grade 2 titanium reported earlier. It is observed that inclusion of time-varying stress is essential to studying EMR occurring during strain hardening. The model confirms the observation that the amplitude of oscillatory EMR is generally much larger than the amplitude of exponential EMR. Further, the variation in viscous damping as a function of strain during strain hardening too has been incorporated in the model. The nature as well as amplitude of the EMR calculated by this model matches well with the earlier reported results on titanium. The model is thus suitable for studying the EMR during plastic deformation of metals and alloys with negligible Peierls stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vorobev, A.: electromagnetic-radiation in process of crack formation in dielectrics. In: Plenum publ corp consultants bureau, vol. 13, pp. 352–353. 233 spring st, New York (1977)

  2. Petrenko, V.: On the nature of electrical polarization of materials caused by cracks. Application to ice electromagnetic emission. Philos. Mag. B 67(3), 301–315 (1993)

    Article  Google Scholar 

  3. Khatiashvili, N.: The electromagnetic effect accompanying the fracturing of alkaline halide crystals and rocks. Phys. Solid Earth 20(9), 656–661 (1984)

    Google Scholar 

  4. Prekel, H., Lawley, A., Conrad, H.: Dislocation velocity measurements in high purity molybdenum. Acta metall. 16(3), 337–345 (1968)

    Article  Google Scholar 

  5. Frid, V., Rabinovitch, A., Bahat, D.: Fracture induced electromagnetic radiation. J. Phys. D: Appl. Phys. 36(13), 1620 (2003)

    Article  MATH  Google Scholar 

  6. Bahat, D., Frid, V., Rabinovitch, A., Palchik, V.: Exploration via electromagnetic radiation and fractographic methods of fracture properties induced by compression in glass-ceramic. Int. J. Fract. 116(2), 179–194 (2002)

    Article  Google Scholar 

  7. Frid, V., Rabinovitch, A., Bahat, D.: Crack velocity measurement by induced electromagnetic radiation. Phys. Lett. A 356(2), 160–163 (2006)

    Article  MATH  Google Scholar 

  8. Lichtenberger, M.: Underground measurements of electromagnetic radiation related to stress-induced fractures in the Odenwald Mountains (Germany). Pure Appl. Geophys. 163(8), 1661–1677 (2006)

    Article  Google Scholar 

  9. Burak, Y.I., Kondrat, V., Hrytsyna, O.: Subsurface mechanoelectromagnetic phenomena in thermoelastic polarized bodies in the case of local displacements of mass. Mater. Sci. 43(4), 449–463 (2007)

    Article  Google Scholar 

  10. Carpinteri, A., Cardone, F., Lacidogna, G.: Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp. Mech. 50(8), 1235–1243 (2010)

    Article  Google Scholar 

  11. Carpinteri, A., Lacidogna, G., Borla, O., Manuello, A., Niccolini, G.: Electromagnetic and neutron emissions from brittle rocks failure: experimental evidence and geological implications. Sadhana 37(1), 59–78 (2012)

    Article  Google Scholar 

  12. Carpinteri, A., Lacidogna, G., Manuello, A., Niccolini, G., Schiavi, A., Agosto, A.: Mechanical and electromagnetic emissions related to stress-induced cracks. Exp. Tech. 36(3), 53–64 (2012)

    Article  Google Scholar 

  13. Fukui, K., Okubo, S., Terashima, T.: Electromagnetic radiation from rock during uniaxial compression testing: the effects of rock characteristics and test conditions. Rock Mech. Rock Eng. 38(5), 411–423 (2005)

    Article  Google Scholar 

  14. Lacidogna, G., Carpinteri, A., Manuello, A., Durin, G., Schiavi, A., Niccolini, G., Agosto, A.: Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain 47(s2), 144–152 (2011)

    Article  Google Scholar 

  15. Lavrov, A.: Fracture-induced physical phenomena and memory effects in rocks: a review. Strain 41(4), 135–149 (2005)

    Article  Google Scholar 

  16. Widom, A., Swain, J., Srivastava, Y.: Neutron production from the fracture of piezoelectric rocks. J. Phys. G: Nucl. Part. Phys. 40(1), 015006 (2013)

    Article  Google Scholar 

  17. Berri, B., Gribov, V.: Radio irradiations of glaciers and snow avalanches. Materiali Glatsiologicheskih Issledovanii 44, 150–156 (1982)

    Google Scholar 

  18. Kachurin, L., Salomshchikov, V., Stepanyuk, I.: Nonthermal radiation emission by deformed ice cover on water. Issledovaniye Zemli Iz Kosmosa 8, 260–265 (1983)

    Google Scholar 

  19. Kachurin, L., Andrusenko, V., Loginov, V., Psalomshchikov, V., Ovanes’ yan, K., Khar’kov, A.: Generation of electromagnetic fields by fracture of the ice cover of marine areas. Izv Atmos. Ocean Phys. 24, 815–817 (1988)

    Google Scholar 

  20. Fifolt, D., Petrenko, V., Schulson, E.: Preliminary study of electromagnetic emissions from cracks in ice. Philos. Mag. B 67, 289–299 (1993)

    Article  Google Scholar 

  21. Rabinovitch, A., Frid, V., Bahat, D.: Gutenberg-Richter-type relation for laboratory fracture-induced electromagnetic radiation. Phys. Rev. E 65, 011401 (2001)

    Article  Google Scholar 

  22. Sharma, S.K., Chauhan, V.S., Kumar, A.: Detection of electromagnetic radiation in ferroelectric ceramics for non-contact sensing applications. J. Alloys Compd. 662, 534–540 (2016)

    Article  Google Scholar 

  23. Misra, A.: Electromagnetic effects at metallic fracture. Nature 254, 133–134 (1975)

    Article  Google Scholar 

  24. Misra, A.: A physical model for the stress-induced electromagnetic effect in metals. Appl. Phys. 16(2), 195–199 (1978)

    Article  Google Scholar 

  25. Tudik, A., Valuev, N.: Electromagnetic emission during the fracture of metals. Sov. Tech. Phys. Lett. 6, 37 (1980)

    Google Scholar 

  26. Jagasivamani, V., Iyer, K.: Electromagnetic emission during the fracture of heat-treated spring steel. Mater. Lett. 6(11), 418–422 (1988)

    Article  Google Scholar 

  27. Misra, A.: Ninth Yearbook to the Encyclopedia of Science and Technology. Edizioni Scientifiche E Tecniche, Mondadori (1975)

    Google Scholar 

  28. Misra, A.: Discovery of Stress-Induced Magnetic and Electromagnetic Effects in Metals. D. Sc. Dissertation, Ranchi University (1976)

  29. Misra, A.: Stress-induced magnetic and electromagnetic effects in metals. J. Sci. Ind. Res. 40(1), 22–23 (1981)

    Google Scholar 

  30. Misra, A., Ghosh, S.: Electromagnetic radiation characteristics during fatigue crack propagation and failure. Appl. Phys. 23(4), 387–390 (1980)

    Article  Google Scholar 

  31. Mishra, D., Misra, A.: Stress-induced electromagnetic effect—a new biophysical application to head injury. Neurol. India 28, 234–241 (1980)

    Google Scholar 

  32. Bivin, Y.K., Viktorov, V., Kulinich, Y.V., Chursin, A.: Electromagnetic emission in the process of dynamic deformation of various materials. Izv. Akad. Nauk SSSR Mekh. Tverd. Tela 1, 183–186 (1982)

    Google Scholar 

  33. Dmitriev, V., Smirnov, V., Vorob’ev, A.: Determination of fracture loads by the method of recording electromagnetic signals. Stek. Keram 10, 10–11 (1982)

    Google Scholar 

  34. Perelman, M., Khatiashvili, N.: Electromagnetic radiation under joint formation and solid state brittle fracture. Bull. Acad. Sci. Georgian SSR 99(2), 357–358 (1980)

    Google Scholar 

  35. Dickinson, J., Jensen, L., Bhattacharya, S.: Fractoemission from the failure of metal/epoxy interfaces. J. Vac. Sci. Technol. A 3(3), 1398–1402 (1985)

    Article  Google Scholar 

  36. Burak, Y.I., Kondrat, V., Chekurin, V.: On possible mechanisms of electromagnetic emission in the process of formation of discontinuities in conducting bodies. In: Abstract of the All-Union Science and Engineering Conference on Engineering Diagnostics, p. 85 (1985)

  37. Alekseev, D., Egorov, P.: On the shape of pulses of electromagnetic emission generated by a moving crack. Fiz.-Tekh. Probl. Razrab. Polezn. Iskop 6, 3–5 (1993)

    Google Scholar 

  38. Brown, W., Calahan, K.: Electromagnetic radiation from the high strain rate fracture of mild carbon-steel. In: APS Shock Compression of Condensed Matter Meeting Abstracts, p. 7040 (2005)

  39. Brown, W., Schmidt, M., Dzwilewski, P., Samaras, T.: Electromagnetic emissions in case of detonation of metal encased explosives. In: Proceedings of 14th APS Topical Conference on Shock compression of Condensed Matter, Baltimore (2005)

  40. Srilakshmi, B., Misra, A.: Secondary electromagnetic radiation during plastic deformation and crack propagation in uncoated and tin coated plain-carbon steel. J. Mater. Sci. 40(23), 6079–6086 (2005)

    Article  Google Scholar 

  41. Chauhan, V.S., Misra, A.: Electromagnetic radiation during plastic deformation under unrestricted quasi-static compression in metals and alloys. Int. J. Mater. Res. 101(7), 857–864 (2010)

    Article  Google Scholar 

  42. Chauhan, V.S., Misra, A.: Assessment of grain size and lattice parameters of titanium alloy through electromagnetic emission technique. Int. J. Microstruct. Mater. Prop. 6(6), 486–506 (2011)

    Google Scholar 

  43. Mishra, S.K., Sharma, V., Misra, A.: Effect of rate of deformation on electromagnetic radiation during quasi-static compression of sintered aluminium preforms. Int. J. Mater. Res. 105(3), 265–271 (2014)

    Article  Google Scholar 

  44. Singh, R., Lal, S., Misra, A.: Variation in electromagnetic radiation during plastic deformation under tension and compression of metals. Appl. Phys. A 117(3), 1203–1215 (2014)

    Article  Google Scholar 

  45. Misra, A., Singh, R., Lal, S.: A physical model for the intermittent electromagnetic radiation during plastic deformation of metals. Appl. Phys. A 121, 597–605 (2015)

    Article  Google Scholar 

  46. Molotskii, M.: Dislocation mechanism for the Misra effect. Sov. Tech. Phys. Lett. 6(1), 22–23 (1980)

    Google Scholar 

  47. Alekseev, O., Lazarev, S., Priemskii, D.: Theory of electromagnetic effects accompanying dynamic deformation of metals. J. Appl. Mech. Tech. Phys. 25(4), 639–641 (1984)

    Article  Google Scholar 

  48. Misra, A., Kumar, A.: Some basic aspects of electromagnetic radiation during crack propagation in metals. Int. J. Fract. 127(4), 387–401 (2004)

    Article  Google Scholar 

  49. Kumar, R., Misra, A.: Effect of processing parameters on the electromagnetic radiation emission during plastic deformation and crack propagation in copper-zinc alloys. J. Zhejiang Univ. Sci. A 7(11), 1800–1809 (2006)

    Article  Google Scholar 

  50. Kumar, R., Misra, A.: Some basic aspects of electromagnetic radiation emission during plastic deformation and crack propagation in Cu-Zn alloys. Mater. Sci. Eng. A 454, 203–210 (2007)

    Article  Google Scholar 

  51. Misra, A., Prasad, R.C., Chauhan, V.S., Srilakshmi, B.: A theoretical model for the electromagnetic radiation emission during plastic deformation and crack propagation in metallic materials. Int. J. Fract. 145(2), 99–121 (2007)

    Article  MATH  Google Scholar 

  52. Chauhan, V., Misra, A.: Effects of strain rate and elevated temperature on electromagnetic radiation emission during plastic deformation and crack propagation in ASTM B 265 grade 2 titanium sheets. J. Mater. Sci. 43(16), 5634–5643 (2008)

  53. Misra, A., Prasad, R., Chauhan, V.S., Kumar, R.: Effect of Peierls’ stress on the electromagnetic radiation during yielding of metals. Mech. Mater. 42(5), 505–521 (2010)

    Article  Google Scholar 

  54. Cottrell, A.: The Bakerian lecture, 1963. Fracture. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, , pp. 1–18 (1963)

  55. Nabarro, F.R.: Theory of crystal dislocations (1967)

  56. Flügge S.: Electrical conductivity I, vol. 19. Springer, Berlin (1956)

  57. Weng, G.: Dislocation theories of work hardening and yield surfaces of single crystals. Acta Mech. 37(3–4), 217–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  58. Callister, W.D., Rethwisch, D.G.: Fundamentals of Materials Science and Engineering, vol. 471660817. Wiley, New York (2013)

    Google Scholar 

  59. Kosevich, A.: Crystal dislocations and the theory of elasticity. Dislocations Solids 1, 33–141 (1979)

    Google Scholar 

  60. Dieter, G.E., Bacon, D.: Mechanical Metallurgy, vol. 3. McGraw-Hill, New York (1986)

    Google Scholar 

  61. Sneddon, I.: The Use of Integral Transforms. In. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  62. Spiegel, M.R.: Laplace Transforms. McGraw-Hill, New York (1965)

    Google Scholar 

  63. Hull, D., Bacon, D.J.: Introduction to Dislocations, vol. 257. Pergamon Press, Oxford (1984)

    Google Scholar 

  64. Brailsford, A.: Anharmonicity contributions to dislocation drag. J. Appl. Phys. 43(4), 1380–1393 (1972)

    Article  Google Scholar 

  65. Groh, S., Marin, E., Horstemeyer, M., Zbib, H.: Multiscale modeling of the plasticity in an aluminum single crystal. Int. J. Plast. 25(8), 1456–1473 (2009)

    Article  MATH  Google Scholar 

  66. Yefimov, S., Groma, I., Van der Giessen, E.: A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52(2), 279–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ferguson, W., Kumar, A., Dorn, J.: Dislocation damping in aluminum at high strain rates. J. Appl. Phys. 38(4), 1863–1869 (1967)

    Article  Google Scholar 

  68. Kumar, A., Kumble, R.G.: Viscous drag on dislocations at high strain rates in copper. J. Appl. Phys. 40(9), 3475–3480 (1969)

    Article  Google Scholar 

  69. Ninomiya, T.: Frictional force acting on a dislocation-fluttering mechanism. J. Phys. Soc. Jpn. 36(2), 399–405 (1974)

    Article  MathSciNet  Google Scholar 

  70. Vreeland Jr., T.: Dislocation drag in close-packed metals. Scr. Metall. 18(7), 645–651 (1984)

    Article  Google Scholar 

  71. Guberman, H.: Stress dependence of dislocation velocity in single crystal niobium. Acta metall. 16(5), 713–721 (1968)

    Article  Google Scholar 

  72. Okazaki, K., Aono, Y., Kagawa, M.: Mobile dislocations during stress relaxation in an Fe 0.056 at% Ti alloy. Acta metall. 24(12), 1121–1130 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

Research grant from the Department of Science and Technology, Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmol Kothari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothari, A., Chauhan, V.S., Misra, A. et al. Effect of strain hardening on the electromagnetic radiation during plastic deformation of metals and alloys beyond yield point. Nonlinear Dyn 85, 2687–2704 (2016). https://doi.org/10.1007/s11071-016-2855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2855-5

Keywords

Navigation