Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Convergence of various computer-aided systems for breast tumor diagnosis: a comparative insight

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Breast Cancer, with an expected 42,780 deaths in the US alone in 2024, is one of the most prevalent types of cancer. The death toll due to breast cancer would be very high if it were to be totaled up globally. Early detection of breast cancer is the only way to decrease the mortality caused by it. In order to diagnose breast cancer, even the most competent and qualified pathologists and radiologists have to examine hundreds of high-resolution images, which is a massive burden on them. Compared to the number of cases, very few experts are available to manage this burden. Additionally, as humans are more prone to mistakes, the likelihood of finding false positive cases is also high. Numerous AI techniques, including machine learning and deep learning, are ideally suited to address these issues, inspiring many researchers to introduce novel computer-aided detection systems.

In this study, we have comprehensively reviewed pre-existing literature aimed at developing computer-aided systems based on using machine learning, deep learning, and vision transformers to identify and classify breast cancer. We have discussed numerous imaging modalities for detecting breast cancer, along with the widely used data pre-processing approaches, machine learning and deep learning models, as well as ensemble learning methods suitable for the task. Popular datasets and their sources are also listed for future referencing. Finally, we have identified a few gaps and addressed potential future research directions with an intent of aiding researchers select approaches tailored to case-specific needs.

Highlights

➢ Demonstrated CAD systems’ role in improving early breast cancer detection.

➢ Clarified breast cancer types and compared various imaging methods.

➢ Described diverse Data Preprocessing, ML, DL, and Ensemble Learning approaches.

➢ Reviewed image-based computer-aided systems based on ML, DL, and Transformers.

➢ Concluded with challenges and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. What is breast cancer? American Cancer Society. Available: https://www.cancer.org/cancer/breast-cancer/about/what-is-breast-cancer.html. Accessed 9 Oct 2022

  2. Hejmadi M (2014) Introduction to cancer biology. Available: https://books.google.com/books?hl=en&lr=&id=dLF3UCIWECYC&oi=fnd&pg=PA5&dq=%5B2%5D%09M.+Hejmadi,+Introduction+to+Cancer+Biology,+Bookboon,+London,+UK,+2nd+edition,+2010.&ots=rAM2WhFif5&sig=R-FN-boHWWCYiidxOV5_5l5MGCA. Accessed 9 Oct 2022

  3. Cancer facts & figures 2022. American Cancer Society. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html. Accessed 12 Oct 2022

  4. Cancer facts & figures 2024. American Cancer Society. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2024-cancer-facts-figures.html. Accessed 26 Feb 2024

  5. Breast cancer. Available: https://www.who.int/news-room/fact-sheets/detail/breast-cancer. Accessed 12 Oct 2022

  6. Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P (2022) Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res 156(4–5):598. https://doi.org/10.4103/IJMR.IJMR_1821_22

    Article  Google Scholar 

  7. Report of the hospital based cancer registries 2021. Available: https://ncdirindia.org/All_Reports/HBCR_2021/Default.aspx. Accessed 12 Oct 2022

  8. Ragab D, Sharkas M, Marshall S, JR- PeerJ, undefined 2019 (2019) Breast cancer detection using deep convolutional neural networks and support vector machines. peerj.com. Available: https://peerj.com/articles/6201/. Accessed 12 Oct 2022

  9. Henry NL, Shah PD, Haider I, Freer PE, Jagsi R, Sabel MS (2020) Cancer of the breast. Abeloff’s Clin Oncol 1560–1603.e12. https://doi.org/10.1016/B978-0-323-47674-4.00088-8

  10. Breast cancer: symptoms, stages, types, and more. Available: https://www.healthline.com/health/breast-cancer. Accessed 12 Oct 2022

  11. Hou R et al (2020) Prediction of upstaged ductal carcinoma in situ using forced labeling and domain adaptation. IEEE Trans Biomed Eng 67(6):1565–1572. https://doi.org/10.1109/TBME.2019.2940195

    Article  Google Scholar 

  12. Czamota G et al (2018) Quantitative ultrasound and texture predictors of breast tumour response to chemotherapy. IEEE Int Ultrason Symp 2018. https://doi.org/10.1109/ULTSYM.2018.8579994

  13. ER/PR negative, HER2-negative (triple-negative) breast cancer - UpToDate. Available: https://www.uptodate.com/contents/er-pr-negative-her2-negative-triple-negative-breast-cancer?search=er-pr-negative-her2-negative-triple-negative-breast-cancer.&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1. Accessed 13 Oct 2022

  14. Overmoyer B, Pierce LJ (2014) Chapter 59: Inflammatory breast cancer. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 5th edn. Lippincott-Williams & Wilkins, Philadelphia

    Google Scholar 

  15. Hansen NM (2014) Chapter 63: Paget’s disease. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 5th edn. Lippincott-Williams & Wilkins, Philadelphia

    Google Scholar 

  16. Esteva FJ, Gutiérrez C (2014) Chapter 64: Nonepithelial malignancies of the breast. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 5th edn. Lippincott-Williams & Wilkins, Philadelphia

    Google Scholar 

  17. Calhoun KE, Allison KH, Kim JN, Rahbar H, Anderson BO (2014) Chapter 62: Phyllodes tumors. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  18. Yap MH et al (2018) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22(4):1218–1226. https://doi.org/10.1109/JBHI.2017.2731873

    Article  Google Scholar 

  19. Lee J, Kang BJ, Kim SH, Park GE (2022) Evaluation of computer-aided detection (CAD) in screening automated breast ultrasound based on characteristics of CAD marks and false-positive marks. Diagnostics 12:583. https://doi.org/10.3390/DIAGNOSTICS12030583

    Article  Google Scholar 

  20. Mahmood T, Li J, Pei Y, Akhtar F, Imran A, Rehman K (2020) A brief survey on breast cancer diagnostic with deep learning schemes using multi-image modalities. IEEE Access 8:165779–165809. https://doi.org/10.1109/ACCESS.2020.3021343

    Article  Google Scholar 

  21. Moghbel M, Ooi CY, Ismail N, Hau YW, Memari N (2019) A review of breast boundary and pectoral muscle segmentation methods in computer-aided detection/diagnosis of breast mammography. Artif Intell Rev 53(3):1873–1918. https://doi.org/10.1007/S10462-019-09721-8

    Article  Google Scholar 

  22. Pavithra S, Vanithamani R, Justin J (2020) Computer aided breast cancer detection using ultrasound images. Mater Today Proc 33:4802–4807. https://doi.org/10.1016/J.MATPR.2020.08.381

    Article  Google Scholar 

  23. Murtaza G et al (2020) Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artif Intell Rev 53(3):1655–1720. https://doi.org/10.1007/S10462-019-09716-5/TABLES/12

    Article  MathSciNet  Google Scholar 

  24. Domingues I, Pereira G, Martins P, Duarte H, Santos J, Abreu PH (2019) Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET. Artif Intell Rev 53(6):4093–4160. https://doi.org/10.1007/S10462-019-09788-3

    Article  Google Scholar 

  25. Saha M, Chakraborty C, Racoceanu D (2018) Efficient deep learning model for mitosis detection using breast histopathology images. Comput Med Imaging Graph 64:29–40. https://doi.org/10.1016/J.COMPMEDIMAG.2017.12.001

    Article  Google Scholar 

  26. Borchartt TB, Conci A, Lima RCF, Resmini R, Sanchez A (2013) Breast thermography from an image processing viewpoint: a survey. Signal Process 93(10):2785–2803. https://doi.org/10.1016/J.SIGPRO.2012.08.012

    Article  Google Scholar 

  27. Ukwuoma CC, Hossain MA, Jackson JK, Nneji GU, Monday HN, Qin Z (2022) Multi-classification of breast cancer lesions in histopathological images using DEEP_Pachi: multiple self-attention head. Diagnostics (Basel) 12(5):1152. https://doi.org/10.3390/DIAGNOSTICS12051152

    Article  Google Scholar 

  28. Fiorica JV (2016) Breast cancer screening, mammography, and other modalities. Clin Obstet Gynecol 59(4):688–709. https://doi.org/10.1097/GRF.0000000000000246

    Article  Google Scholar 

  29. Fujimura S, Tamura T, Kawasaki Y (2021) Investigation of correlation between Compressed Breast Thickness in mammography and each clinical factor. Jpn J Breast Cancer Screen 30(2):177–181. https://doi.org/10.3804/JJABCS.30.177

    Article  Google Scholar 

  30. Li Q et al (2017) Computer-aided diagnosis of mammographic masses using geometric verification-based image retrieval. Med Imaging 2017 Comput Aided Diagn 10134:101342. https://doi.org/10.1117/12.2255799

    Article  Google Scholar 

  31. Kaur P, Singh G, Kaur P (2019) Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Inform Med Unlocked 16:100151. https://doi.org/10.1016/J.IMU.2019.01.001

    Article  Google Scholar 

  32. Suckling J et al (2015) Mammographic Image Analysis Society (MIAS) database v1.21. Available: https://www.repository.cam.ac.uk/handle/1810/250394. Accessed 17 Oct 2022

  33. Han J et al (2019) Reducing unnecessary biopsy of breast lesions: preliminary results with combination of strain and shear-wave elastography. Ultrasound Med Biol 45(9):2317–2327. https://doi.org/10.1016/J.ULTRASMEDBIO.2019.05.014

    Article  Google Scholar 

  34. Ucar H, Kacar E, Karaca R (2022) The contribution of a solid breast mass gray-scale histographic analysis in ascertaining a benign-malignant differentiation. J Diagn Med Sonogr 38(4):317–322. https://doi.org/10.1177/87564793221078205

    Article  Google Scholar 

  35. Youk JH, Gweon HM, Son EJ (2017) Shear-wave elastography in breast ultrasonography: the state of the art. Ultrasonography 36(4):300–309. https://doi.org/10.14366/USG.17024

    Article  Google Scholar 

  36. Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A (2020) Dataset of breast ultrasound images. Data Brief 28:104863. https://doi.org/10.1016/J.DIB.2019.104863

    Article  Google Scholar 

  37. Mann RM et al (2022) Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI). Eur Radiol 32(6):4036–4045. https://doi.org/10.1007/S00330-022-08617-6/FIGURES/1

    Article  Google Scholar 

  38. Sriussadaporn S, Sriussadaporn S, Pak-art R, Kritayakirana K, Prichayudh S, Samorn P (2022) Ultrasonography increases sensitivity of mammography for diagnosis of multifocal, multicentric breast cancer using 356 whole breast histopathology as a gold standard. Surg Pract 26(3):181–186. https://doi.org/10.1111/1744-1633.12543

    Article  Google Scholar 

  39. Greenwood HI (2019) Abbreviated protocol breast MRI: the past, present, and future. Clin Imaging 53:169–173. https://doi.org/10.1016/j.clinimag.2018.10.017

    Article  Google Scholar 

  40. van Zelst JCM et al (2018) Multireader study on the diagnostic accuracy of ultrafast breast magnetic resonance imaging for breast cancer screening. Invest Radiol 53(10):579–586. https://doi.org/10.1097/RLI.0000000000000494

    Article  Google Scholar 

  41. Heller SL, Moy L (2019) MRI breast screening revisited. J Magn Reson Imaging 49(5):1212–1221. https://doi.org/10.1002/JMRI.26547

    Article  Google Scholar 

  42. García E et al (2018) A step-by-step review on patient-specific biomechanical finite element models for breast MRI to x-ray mammography registration. Med Phys 45(1):e6–e31. https://doi.org/10.1002/MP.12673

    Article  Google Scholar 

  43. Kalantarova A, Zembol NJ, Kufel-Grabowska J (2021) Pregnancy-associated breast cancer as a screening and diagnostic challenge: a case report. Nowotwory J Oncol 71(3):162–164. https://doi.org/10.5603/NJO.A2021.0017

    Article  Google Scholar 

  44. Huang W et al (2014) Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol 7(1):153–166. https://doi.org/10.1593/TLO.13838

    Article  Google Scholar 

  45. Clark K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045. https://doi.org/10.1007/S10278-013-9622-7

    Article  Google Scholar 

  46. Brenner DJ, Hricak H (2010) Radiation exposure from medical imaging: time to regulate? JAMA 304(2):208–209. https://doi.org/10.1001/JAMA.2010.973

    Article  Google Scholar 

  47. Lin EC (2010) Radiation risk from medical imaging. Mayo Clin Proc 85(12):1142. https://doi.org/10.4065/MCP.2010.0260

    Article  Google Scholar 

  48. breast_ct_sah_507.jpg (522×465). Available: http://www.aboutcancer.com/breast_ct_sah_507.jpg. Accessed 19 Oct 2022

  49. Balkenhol M, Karssemeijer N, Litjens GJS, van der Laak J, Ciompi F, Tellez D (2018) H and E stain augmentation improves generalization of convolutional networks for histopathological mitosis detection. SPIE 10581:105810Z. https://doi.org/10.1117/12.2293048

    Article  Google Scholar 

  50. al Nahid A, bin Ali F, Kong Y (2017) Histopathological breast-image classification with image enhancement by convolutional neural network. In: 20th International Conference of Computer and Information Technology, ICCIT 2017, Vol. 2018, p 1–6. https://doi.org/10.1109/ICCITECHN.2017.8281815

  51. Bardou D, Zhang K, Ahmad SM (2018) Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6:24680–24693. https://doi.org/10.1109/ACCESS.2018.2831280

    Article  Google Scholar 

  52. Araujo T et al (2017) Classification of breast cancer histology images using convolutional neural networks. PLoS One 12(6):e0177544. https://doi.org/10.1371/JOURNAL.PONE.0177544

    Article  MathSciNet  Google Scholar 

  53. Kumar A et al (2020) Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer. Inf Sci (N Y) 508:405–421. https://doi.org/10.1016/J.INS.2019.08.072

    Article  Google Scholar 

  54. Aresta G et al (2019) BACH: grand challenge on breast cancer histology images. Med Image Anal 56:122–139. https://doi.org/10.1016/J.MEDIA.2019.05.010

    Article  Google Scholar 

  55. History of infrared thermal imaging and temperature measurement. Available: https://www.thermology.com/history.htm. Accessed 19 Oct 2022

  56. Lawson R (1957) Thermography; a new tool in the investigation of breast lesions. Undefined

  57. Ramírez-Torres A et al (2017) The role of malignant tissue on the thermal distribution of cancerous breast. J Theor Biol 426:1339–1351. https://doi.org/10.1016/J.JTBI.2017.05.031

    Article  MathSciNet  Google Scholar 

  58. Liu HH, Liu ZQ (2013) Thermal texture mapping—a new way of evaluating thermal signatures of the body and holistic interpretation of infrared images. In: Medical infrared imaging. CRC Press. Available: https://www.flow-of-light.com/documents/ttm%20review%20CRC%20handbook%20Liu%202010.pdf. Accessed 28 Oct 2022

  59. Yuan C, Wang C, Song ST (2006) Thermal texture mapping in breast cancer. Chin J Med Imag Technol 16(1):7–10

    Google Scholar 

  60. Ng EYK, Fok SC, Peh YC, Ng FC, Sim LSJ (2009) Computerized detection of breast cancer with artificial intelligence and thermograms. 26(4):152–157. https://doi.org/10.1080/03091900210146941

  61. da Silva L et al (2014) A new database for breast research with infrared image. J Med Imaging Health Inform 4:92–100. https://doi.org/10.1166/jmihi.2014.1226

    Article  Google Scholar 

  62. Sree SV, Ng EY-K, Acharya RU, Faust O (2011) Breast imaging: a survey. World J Clin Oncol 2(4):171. https://doi.org/10.5306/WJCO.V2.I4.171

    Article  Google Scholar 

  63. Sarikaya I (2021) Breast cancer and PET imaging. Nucl Med Rev Cent East Eur 24(1):16–26. https://doi.org/10.5603/NMR.2021.0004

    Article  MathSciNet  Google Scholar 

  64. Breast PET Scan – Breast360.org. The American Society of Breast Surgeons Foundation. Available: https://breast360.org/topic/2017/01/01/breast-pet-scan/. Accessed 28 Oct 2022

  65. Tang J, Rangayyan RM, Xu J, el Naqa IE, Yang Y (2009) Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 13(2):236–251. https://doi.org/10.1109/TITB.2008.2009441

    Article  Google Scholar 

  66. Zhou X et al (2020) A comprehensive review for breast histopathology image analysis using classical and deep neural networks. IEEE Access 8:90931–90956. https://doi.org/10.1109/ACCESS.2020.2993788

    Article  Google Scholar 

  67. Wilson ML, Fleming KA, Kuti MA, Looi LM, Lago N, Ru K (2018) Access to pathology and laboratory medicine services: a crucial gap. Lancet 391(10133):1927–1938. https://doi.org/10.1016/S0140-6736(18)30458-6

    Article  Google Scholar 

  68. Robboy SJ et al (2013) Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply. Arch Pathol Lab Med 137(12):1723–1732. https://doi.org/10.5858/ARPA.2013-0200-OA

    Article  Google Scholar 

  69. Pöllänen I, Braithwaite B, Haataja K, Ikonen T, Toivanen P (2015) Current analysis approaches and performance needs for whole slide image processing in breast cancer diagnostics. In: Proceedings - 2015 international conference on embedded computer systems: architectures, modeling and simulation, SAMOS 2015. p 319–325. https://doi.org/10.1109/SAMOS.2015.7363692

  70. Veta M, Pluim JPW, van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61(5):1400–1411. https://doi.org/10.1109/TBME.2014.2303852

    Article  Google Scholar 

  71. Hossain MS (2017) Cloud-supported cyber-physical localization framework for patients monitoring. IEEE Syst J 11(1):118–127. https://doi.org/10.1109/JSYST.2015.2470644

    Article  Google Scholar 

  72. Ghoneim A, Muhammad G, Hossain MS (2020) Cervical cancer classification using convolutional neural networks and extreme learning machines. Futur Gener Comput Syst 102:643–649. https://doi.org/10.1016/J.FUTURE.2019.09.015

    Article  Google Scholar 

  73. Tran H (2019) Survey of machine learning and data mining techniques used in multimedia system. https://doi.org/10.13140/RG.2.2.20395.49446/1

  74. Peng J, Lee K, Ingersoll G (2002) An introduction to logistic regression analysis and reporting. J Educ Res 96:3–14. https://doi.org/10.1080/00220670209598786

    Article  Google Scholar 

  75. Cortes C, Vapnik V, Saitta L (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  76. Veropoulos K, Cristianini N, Campbell C (1999) The application of support vector machines to medical decision support: a case study. Adv Course Artif Intell

  77. Alimirzaei F, Kieslich CA (2023) Machine learning models for predicting membranolytic anticancer peptides. Comput Aided Chem Eng 52:2691–2696. https://doi.org/10.1016/B978-0-443-15274-0.50428-5

    Article  Google Scholar 

  78. Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J (2013) Artificial neural networks in medical diagnosis. J Appl Biomed 11(2):47–58. https://doi.org/10.2478/V10136-012-0031-X

    Article  Google Scholar 

  79. Heydarpour F, Abbasi E, Ebadi MJ, Karbassi SM (2020) Solving an optimal control problem of cancer treatment by artificial neural networks. Int J Interact Multimed Artif Intell 6(Regular Issue):18–25. https://doi.org/10.9781/IJIMAI.2020.11.011

    Article  Google Scholar 

  80. Imandoust SB, Bolandraftar M (2013) Application of K-nearest neighbor (KNN) approach for predicting economic events theoretical background. Int J Eng Res Appl 3:605–610

    Google Scholar 

  81. Fatima N, Liu L, Hong S, Ahmed H (2020) Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access 8:150360–150376. https://doi.org/10.1109/ACCESS.2020.3016715

    Article  Google Scholar 

  82. Wu W, Nagarajan S, Chen Z (2016) Bayesian machine learning: EEG\/MEG signal processing measurements. IEEE Signal Process Mag 33(1):14–36. https://doi.org/10.1109/MSP.2015.2481559

    Article  Google Scholar 

  83. Fauziyyah NA, Abdullah S, Nurrohmah S (2020) Reviewing the consistency of the Naïve Bayes Classifier’s performance in medical diagnosis and prognosis problems. AIP Conf Proc 2242(1):030019. https://doi.org/10.1063/5.0007885

    Article  Google Scholar 

  84. Langarizadeh M, Moghbeli F (2016) Applying naive Bayesian networks to disease prediction: a systematic review. Acta Inform Med 24(5):364. https://doi.org/10.5455/AIM.2016.24.364-369

    Article  Google Scholar 

  85. Al-Aidaroos KM, Bakar AA, Othman Z (2012) Medical data classification with Naive Bayes approach. Inf Technol J 11(9):1166

    Article  Google Scholar 

  86. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844. https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  87. kam Ho T, Hull JJ, Srihari SN (1994) Decision combination in multiple classifier systems. IEEE Trans Pattern Anal Mach Intell 16(1):66–75. https://doi.org/10.1109/34.273716

    Article  Google Scholar 

  88. Octaviani TL, Rustam Z (2019) Random forest for breast cancer prediction. AIP Conf Proc 2168(1):200501– 200506. https://doi.org/10.1063/1.5132477

  89. Yang XS, Deb S (2010) Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization. Stud Comput Intell 284:101–111. https://doi.org/10.1007/978-3-642-12538-6_9/COVER

    Article  Google Scholar 

  90. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (N Y) 179(13):2232–2248. https://doi.org/10.1016/J.INS.2009.03.004

    Article  Google Scholar 

  91. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008

    Article  Google Scholar 

  92. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/S00521-015-1920-1/TABLES/12

    Article  MathSciNet  Google Scholar 

  93. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734. https://doi.org/10.1007/S00500-018-3102-4/FIGURES/10

    Article  Google Scholar 

  94. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/J.ADVENGSOFT.2015.01.010

    Article  Google Scholar 

  95. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - international conference on neural networks, vol 4, p 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  96. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Adapt Nat Artif Syst. https://doi.org/10.7551/MITPRESS/1090.001.0001

    Article  Google Scholar 

  97. Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6(3):21–44. https://doi.org/10.1109/MCAS.2006.1688199

    Article  Google Scholar 

  98. Rokach L (2009) Ensemble-based classifiers. Artif Intell Rev 33(1):1–39. https://doi.org/10.1007/S10462-009-9124-7

    Article  MathSciNet  Google Scholar 

  99. Rai CK, Pahuja R (2024) An ensemble transfer learning-based deep convolution neural network for the detection and classification of diseased cotton leaves and plants. Multimed Tools Appl. https://doi.org/10.1007/s11042-024-18963-w

    Article  Google Scholar 

  100. Rai CK, Pahuja R (2024) Northern maize leaf blight disease detection and segmentation using deep convolution neural networks. Multimed Tools Appl 83(7):19415–19432. https://doi.org/10.1007/S11042-023-16398-3/FIGURES/9

    Article  Google Scholar 

  101. Rai CK, Pahuja R (2023) Detection and segmentation of rice diseases using deep convolutional neural networks. SN Comput Sci 4(5):499. https://doi.org/10.1007/s42979-023-02014-6

    Article  Google Scholar 

  102. Esfahani MM, Najafi MH, Sadati H (2023) Optimizing EEG signal classification for motor imagery BCIs: FilterBank CSP with Riemannian manifolds and ensemble learning models. In: ICSPIS 2023 - proceedings of the 9th international conference on signal processing and intelligent systems. https://doi.org/10.1109/ICSPIS59665.2023.10402664

  103. Hosni M, Abnane I, Idri A, Carrillo JM, Fernández JL (2019) Reviewing ensemble classification methods in breast cancer. Comput Methods Programs Biomed 177:89–112. https://doi.org/10.1016/J.CMPB.2019.05.019

    Article  Google Scholar 

  104. Abdar M, Makarenkov V (2019) CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement 146:557–570. https://doi.org/10.1016/J.MEASUREMENT.2019.05.022

    Article  Google Scholar 

  105. Rajamohana SP, Dharani A, Anushree P, Santhiya B, Umamaheswari K (2019) Machine learning techniques for healthcare applications: early autism detection using ensemble approach and breast cancer prediction using SMO and IBK. pp 236–251. https://doi.org/10.4018/978-1-5225-7522-1.ch012

  106. Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259. https://doi.org/10.1016/S0893-6080(05)80023-1

    Article  Google Scholar 

  107. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/NATURE14539

    Article  Google Scholar 

  108. Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: overview, challenges and the future BT - classification in BioApps: automation of decision making, vol 26. Springer, pp 323–350. https://doi.org/10.1007/978-3-319-65981-7_12. Accessed 1 Nov 2022

  109. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2323. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  110. LeCun Y et al (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551. https://doi.org/10.1162/NECO.1989.1.4.541

    Article  Google Scholar 

  111. Sarraf S, Tofighi G (2016) Classification of Alzheimer’s disease using fMRI data and deep learning convolutional neural networks

  112. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  113. Chen J et al (2021) Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet. Comput Methods Programs Biomed 200:105878. https://doi.org/10.1016/J.CMPB.2020.105878

    Article  Google Scholar 

  114. He M, Zhao X, Lu Y, Hu Y (2021) An improved AlexNet model for automated skeletal maturity assessment using hand X-ray images. Futur Gener Comput Syst 121:106–113. https://doi.org/10.1016/J.FUTURE.2021.03.018

    Article  Google Scholar 

  115. Lu T, Han B, Yu F (2021) Detection and classification of marine mammal sounds using AlexNet with transfer learning. Ecol Inform 62:101277. https://doi.org/10.1016/J.ECOINF.2021.101277

    Article  Google Scholar 

  116. Rai CK, Pahuja R (2023) Classification of diseased cotton leaves and plants using improved deep convolutional neural network. Multimed Tools Appl 82(16):25307–25325. https://doi.org/10.1007/S11042-023-14933-W/TABLES/10

    Article  Google Scholar 

  117. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556

  118. Szegedy C et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 07-12-June-2015. pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  119. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

  120. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML’15: proceedings of the 32nd international conference on international conference on machine learning, vol 37. pp 448–456

  121. Kumaran N, Vaidya A (2017) Batch normalization and its optimization techniques: review

  122. Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/J.MEDIA.2017.07.005

    Article  Google Scholar 

  123. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI conference on artificial intelligence, vol 31. https://doi.org/10.1609/aaai.v31i1.11231

  124. Alruwaili M, Shehab A, Abd El-Ghany S (2021) COVID-19 diagnosis using an enhanced inception-ResNetV2 deep learning model in CXR images. J Healthc Eng 2021:6658058. https://doi.org/10.1155/2021/6658058

    Article  Google Scholar 

  125. Montalbo FJ (2022) Truncating fined-tuned vision-based models to lightweight deployable diagnostic tools for SARS-CoV-2 infected chest X-rays and CT-scans. Multimed Tools Appl 81(12):16411–16439. https://doi.org/10.1007/S11042-022-12484-0/TABLES/13

    Article  Google Scholar 

  126. Bhosale YH, Singh P, Patnaik KS (2023) COVID-19 and associated lung disease classification using deep learning. pp 283–295. https://doi.org/10.1007/978-981-19-3679-1_22

  127. Bhosale YH, Sridhar Patnaik K, Sridhar Patnaik BK, Bhosale YH, Patnaik KS (2022) Application of deep learning techniques in diagnosis of Covid-19 (Coronavirus): a systematic review. Neural Process Lett 2022:1–53. https://doi.org/10.1007/S11063-022-11023-0

    Article  Google Scholar 

  128. Bhosale YH, Sridhar Patnaik K (2022) IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using RaspberryPi. In: 2022 International Conference on IoT and Blockchain Technology, ICIBT 2022. https://doi.org/10.1109/ICIBT52874.2022.9807725

  129. Bhosale YH, Zanwar S, Ahmed Z, Nakrani M, Bhuyar D, Shinde U (2022) Deep convolutional neural network based Covid-19 classification from radiology X-ray images for IoT enabled devices. In: 8th international conference on advanced computing and communication systems, ICACCS 2022. pp 1398–1402. https://doi.org/10.1109/ICACCS54159.2022.9785113

  130. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017, vol 2017, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243

  131. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 2016-December, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  132. Pawar SD et al (2022) Multichannel DenseNet architecture for classification of mammographic breast density for breast cancer detection. Front Public Health 10:793. https://doi.org/10.3389/FPUBH.2022.885212/BIBTEX

    Article  Google Scholar 

  133. Jiménez Gaona Y, Rodriguez-Alvarez MJ, Espino-Morato H, Castillo Malla D, Lakshminarayanan V (2021) DenseNet for breast tumor classification in mammographic images. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 12940 LNCS, pp 166–176. https://doi.org/10.1007/978-3-030-88163-4_16/COVER

  134. Shahidi F, Daud SM, Abas H, Ahmad NA, Maarop N (2020) Breast cancer classification using deep learning approaches and histopathology image: a comparison study. IEEE Access 8:187531–187552. https://doi.org/10.1109/ACCESS.2020.3029881

    Article  Google Scholar 

  135. Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S (2017) Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-04075-z

    Article  Google Scholar 

  136. Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. https://doi.org/10.1109/CVPR.2017.634

  137. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. pp 7132–7141. https://doi.org/10.1109/CVPR.2018.00745

  138. Zoph B, Vasudevan V, Shlens J, Le Q (2018) Learning transferable architectures for scalable image recognition. https://doi.org/10.1109/CVPR.2018.00907

  139. Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J (2017) Dual path networks

  140. Jiang Y, Chen L, Zhang H, Xiao X (2019) Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLoS One 14(3):e0214587. https://doi.org/10.1371/JOURNAL.PONE.0214587

    Article  Google Scholar 

  141. Tan M, Le QV (2019) EfficientNet: rethinking model scaling for convolutional neural networks. In: 36th international conference on machine learning, ICML 2019, vol, 2019, pp 10691–10700. Available: https://arxiv.org/abs/1905.11946v5. Accessed 7 Apr 2024.

  142. Tan M, Le QV (2021) EfficientNetV2: smaller models and faster training. Proc Mach Learn Res 139:10096–10106. Available: https://arxiv.org/abs/2104.00298v3. Accessed 7 Apr 2024

    Google Scholar 

  143. Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 2022, pp 11966–11976. https://doi.org/10.1109/CVPR52688.2022.01167

  144. Li Z, Hoiem D (2018) Learning without forgetting. IEEE Trans Pattern Anal Mach Intell 40(12):2935–2947. https://doi.org/10.1109/TPAMI.2017.2773081

    Article  Google Scholar 

  145. Nawaz M, Sewissy AA, Soliman THA (2018) Multi-class breast cancer classification using deep learning convolutional neural network. Int J Adv Comput Sci Appl 9(6):316–322. https://doi.org/10.14569/IJACSA.2018.090645

    Article  Google Scholar 

  146. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  147. Li X et al (2015) Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Invest Radiol 50(4):195–204. https://doi.org/10.1097/RLI.0000000000000100

    Article  Google Scholar 

  148. Yankeelov TE, Karczmar GS, Abramson RG (2019) Data from QIN-BREAST-02[Dataset]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.2019.4cfm06rr

  149. Breast Cancer Wisconsin (Diagnostic) - UCI Machine Learning Repository. Available: https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic. Accessed 7 Apr 2024

  150. Rodriguez-Ruiz A et al (2018) Pectoral muscle segmentation in breast tomosynthesis with deep learning. 10575: 564–570.https://doi.org/10.1117/12.2292920

  151. Abdallah Y, Elgak S, Zain H, Rafiq MR, Ebaid E, Elnaema A (2018) Breast cancer detection using image enhancement and segmentation algorithms. Biomed Res 29(20):3732–6. https://doi.org/10.4066/biomedicalresearch.29-18-1106

    Article  Google Scholar 

  152. Gandhi KR, Karnan M (2010) Mammogram image enhancement and segmentation. In: 2010 IEEE international conference on computational intelligence and computing research, ICCIC 2010, pp 714–717. https://doi.org/10.1109/ICCIC.2010.5705895

  153. Thitivirut M, Leekitviwat J, Pathomsathit C, Phasukkit P (2019) Image enhancement by using triple filter and histogram equalization for organ segmentation. In: BMEiCON 2019 - 12th biomedical engineering international conference. https://doi.org/10.1109/BMEICON47515.2019.8990355

  154. Pizer SM et al (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):355–368. https://doi.org/10.1016/S0734-189X(87)80186-X

    Article  Google Scholar 

  155. Pisano ED et al (1998) Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms. J Digit Imaging 11(4):193–200. https://doi.org/10.1007/BF03178082

    Article  Google Scholar 

  156. Wan J, Yin H, Chong AX, Liu ZH (2020) Progressive residual networks for image super-resolution. Appl Intell 50(5):1620–1632. https://doi.org/10.1007/S10489-019-01548-8

    Article  Google Scholar 

  157. Umehara K, Ota J, Ishida T (2017) Super-resolution imaging of mammograms based on the super-resolution convolutional neural network. Open J Med Imaging 07:180–195. https://doi.org/10.4236/ojmi.2017.74018

    Article  Google Scholar 

  158. Dong C, Loy CC, He K, Tang X (2014) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38. https://doi.org/10.1109/TPAMI.2015.2439281

  159. Kim J, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 2016, pp 1646–1654. https://doi.org/10.1109/CVPR.2016.182

  160. Gribbon K, Bailey D (2004) A novel approach to real-time bilinear interpolation. In: Electronic design, test and applications, IEEE international workshop on, vol 0. p 126. https://doi.org/10.1109/DELTA.2004.10055

  161. Schultz RR, Stevenson RL (1994) A Bayesian approach to image expansion for improved definition. IEEE Trans Image Process 3(3):233–242. https://doi.org/10.1109/83.287017

    Article  Google Scholar 

  162. Zhang L, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238. https://doi.org/10.1109/TIP.2006.877407

    Article  Google Scholar 

  163. Glasner D, Bagon S, Irani M (2009) Super-resolution from a single image. In: Proceedings of the IEEE international conference on computer vision. pp 349–356. https://doi.org/10.1109/ICCV.2009.5459271

  164. Jiang Y, Li J (2020) Generative adversarial network for image super-resolution combining texture loss. Appl Sci 10(5):1729. https://doi.org/10.3390/APP10051729

    Article  Google Scholar 

  165. Sun C, Shrivastava A, Singh S, Gupta A (2017) Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE international conference on computer vision, vol 2017, pp 843–852. https://doi.org/10.1109/ICCV.2017.97

  166. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48. https://doi.org/10.1186/S40537-019-0197-0/FIGURES/33

    Article  Google Scholar 

  167. Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst 26(5):1019–1034. https://doi.org/10.1109/TNNLS.2014.2330900

    Article  MathSciNet  Google Scholar 

  168. Weiss K, Khoshgoftaar TM, Wang DD (2016) A survey of transfer learning. J Big Data 3(1):1–40. https://doi.org/10.1186/S40537-016-0043-6/TABLES/6

    Article  Google Scholar 

  169. Zhong Z, Zheng L, Kang G, Li S, Yang Y (2020) Random erasing data augmentation. Proc AAAI Conf Artif Intell 34(07):13001–13008. https://doi.org/10.1609/AAAI.V34I07.7000

    Article  Google Scholar 

  170. Jiménez-gaona Y, Rodríguez-álvarez MJ, Lakshminarayanan V (2020) Deep-learning-based computer-aided systems for breast cancer imaging: a critical review. Appl Sci 10(22):8298. https://doi.org/10.3390/APP10228298

    Article  Google Scholar 

  171. Munir K, Elahi H, Ayub A, Frezza F, Rizzi A (2019) Cancer diagnosis using deep learning: a bibliographic review. Cancers (Basel) 11(9):1235. https://doi.org/10.3390/CANCERS11091235

    Article  Google Scholar 

  172. Dabass J, Arora S, Vig R, Hanmandlu M (2019) Segmentation techniques for breast cancer imaging modalities- a review. In: Proceedings of the 9th international conference on cloud computing, data science and engineering, confluence 2019, pp 658–663. https://doi.org/10.1109/CONFLUENCE.2019.8776937

  173. Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016) A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63(7):1455–1462. https://doi.org/10.1109/TBME.2015.2496264

    Article  Google Scholar 

  174. Lee RS, Gimenez F, Hoogi A, Miyake KK, Gorovoy M, Rubin DL (2017) Data Descriptor: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data 4. https://doi.org/10.1038/SDATA.2017.177

  175. Cruz-Roa A et al (2018) High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: application to invasive breast cancer detection. PLoS One 13(5):e0196828. https://doi.org/10.1371/JOURNAL.PONE.0196828

    Article  Google Scholar 

  176. Cruz-Roa A et al (2014) Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. 9041:904103. https://doi.org/10.1117/12.2043872

  177. Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform 7(1). https://doi.org/10.4103/2153-3539.186902

  178. Saha A et al (2021) Dynamic contrast-enhanced magnetic resonance images of breast cancer patients with tumor locations [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.e3sv-re93

  179. Yari Y, Nguyen TV, Nguyen HT (2020) Deep learning applied for histological diagnosis of breast cancer. IEEE Access 8:162432–162448. https://doi.org/10.1109/ACCESS.2020.3021557

    Article  Google Scholar 

  180. Zhang X et al (2020) Deep learning based analysis of breast cancer using advanced ensemble classifier and linear discriminant analysis. IEEE Access 8:120208–120217. https://doi.org/10.1109/ACCESS.2020.3005228

    Article  Google Scholar 

  181. Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H (2021) A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 9:71194–71209. https://doi.org/10.1109/ACCESS.2021.3079204

    Article  Google Scholar 

  182. Hirra I et al (2021) Breast cancer classification from histopathological images using patch-based deep learning modeling. IEEE Access 9:24273–24287. https://doi.org/10.1109/ACCESS.2021.3056516

    Article  Google Scholar 

  183. Yu X, Kang C, Guttery DS, Kadry S, Chen Y, Zhang YD (2021) ResNet-SCDA-50 for breast abnormality classification. IEEE/ACM Trans Comput Biol Bioinform 18(1):94–102. https://doi.org/10.1109/TCBB.2020.2986544

    Article  Google Scholar 

  184. Haq AU et al (2021) Detection of breast cancer through clinical data using supervised and unsupervised feature selection techniques. IEEE Access 9:22090–22105. https://doi.org/10.1109/ACCESS.2021.3055806

    Article  Google Scholar 

  185. Rajpal S, Agarwal M, Kumar V, Gupta A, Kumar N (2021) Triphasic DeepBRCA-a deep learning-based framework for identification of biomarkers for breast cancer stratification. IEEE Access 9:103347–103364. https://doi.org/10.1109/ACCESS.2021.3093616

    Article  Google Scholar 

  186. Fatakdawala H et al (2010) Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): application to lymphocyte segmentation on breast cancer histopathology. IEEE Trans Biomed Eng 57(7):1676–1689. https://doi.org/10.1109/TBME.2010.2041232

    Article  Google Scholar 

  187. Xu J et al (2016) Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imaging 35(1):119–130. https://doi.org/10.1109/TMI.2015.2458702

    Article  Google Scholar 

  188. Pramanik S, Ghosh S, Bhattacharjee D, Nasipuir M (2020) Segmentation of breast-region in breast thermogram using Arc-approximation and triangular-space search. IEEE Trans Instrum Meas 69(7):4785–4795. https://doi.org/10.1109/TIM.2019.2956362

    Article  Google Scholar 

  189. Pramanik S, Bhattacharjee D, Nasipuri M (2020) MSPSF: a multi-scale local intensity measurement function for segmentation of breast thermogram. IEEE Trans Instrum Meas 69(6):2722–2733. https://doi.org/10.1109/TIM.2019.2925879

    Article  Google Scholar 

  190. Tajbakhsh N et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312. https://doi.org/10.1109/TMI.2016.2535302

    Article  Google Scholar 

  191. Yang H, Kim JY, Kim H, Adhikari SP (2020) Guided soft attention network for classification of breast cancer histopathology images. IEEE Trans Med Imaging 39(5):1306–1315. https://doi.org/10.1109/TMI.2019.2948026

    Article  Google Scholar 

  192. Xu B et al (2020) Attention by selection: a deep selective attention approach to breast cancer classification. IEEE Trans Med Imaging 39(6):1930–1941. https://doi.org/10.1109/TMI.2019.2962013

    Article  Google Scholar 

  193. Tasya W, Sa’Idah S, Hidayat B, Nurfajar F (2022) Breast cancer detection using convolutional neural network with EfficientNet architecture. In: APWiMob 2022 - proceedings: 2022 IEEE Asia pacific conference on wireless and mobile. https://doi.org/10.1109/APWIMOB56856.2022.10014095

  194. Vikranth CS, Jagadeesh B, Rakesh K, Mohammad D, Krishna S, Ajai RAS (2022) Computer assisted diagnosis of breast cancer using histopathology images and convolutional neural networks. In: 2022 2nd international conference on artificial intelligence and signal processing, AISP 2022. https://doi.org/10.1109/AISP53593.2022.9760669

  195. Maqsood S, Damaševičius R, Maskeliūnas R (2022) TTCNN: a breast cancer detection and classification towards computer-aided diagnosis using digital mammography in early stages. Appl Sci 12(7):3273. https://doi.org/10.3390/APP12073273

    Article  Google Scholar 

  196. Houssein EH, Emam MM, Ali AA (2022) An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm. Neural Comput Appl 34(20):18015–18033. https://doi.org/10.1007/S00521-022-07445-5/TABLES/12

    Article  Google Scholar 

  197. Samudrala S, Mohan CK (2023) Semantic segmentation of breast cancer images using DenseNet with proposed PSPNet. Multimed Tools Appl 1–27. https://doi.org/10.1007/S11042-023-17411-5/TABLES/4

  198. Pujari SD, Pawer MM, Pawar SP (2023) M2S2-FNet: multi-scale, Multi-stream feature network with attention mechanism for classification of breast histopathological image. Multimed Tools Appl. 1–14. https://doi.org/10.1007/S11042-023-17717-4/FIGURES/5

  199. van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA (2022) Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal 79:102470. https://doi.org/10.1016/J.MEDIA.2022.102470

    Article  Google Scholar 

  200. Raghavan K, Sivaselvan B, Kamakoti V (2023) Attention guided grad-CAM: an improved explainable artificial intelligence model for infrared breast cancer detection. Multimed Tools Appl 1–28. https://doi.org/10.1007/S11042-023-17776-7/FIGURES/8

  201. Singh MK, Chand S (2023) Hybrid sigmoid activation function and transfer learning assisted breast cancer classification on histopathological images. Multimed Tools Appl 1–18. https://doi.org/10.1007/S11042-023-17808-2/FIGURES/16

  202. Zerouaoui H, El Alaoui O, Idri A (2024) New design strategies of deep heterogenous convolutional neural networks ensembles for breast cancer diagnosis. Multimed Tools Appl 1–32. https://doi.org/10.1007/S11042-023-18002-0/TABLES/14

  203. Li Y, Zhang Z, Sun J, Chen H, Chen Z, Wei J (2024) Tumor detection based on deep mutual learning in automated breast ultrasound. Multimed Tools Appl 1–19. https://doi.org/10.1007/S11042-024-18377-8/TABLES/7

  204. Reguieg FZ, Benblidia N (2024) Ultrasound breast tumoral classification by a new adaptive pre-trained convolutive neural networks for computer-aided diagnosis. Multimed Tools Appl 1–34. https://doi.org/10.1007/S11042-024-18484-6/TABLES/17

  205. Patra A, Behera SK, Sethy PK, Barpanda NK (2024) Breast mass density categorisation using deep transferred EfficientNet with support vector machines. Multimed Tools Appl 1–14. https://doi.org/10.1007/S11042-024-18507-2/TABLES/4

  206. Roy S, Jain PK, Tadepalli K, Reddy BP (2024) Forward attention-based deep network for classification of breast histopathology image. Multimed Tools Appl 1–30. https://doi.org/10.1007/S11042-024-18947-W/FIGURES/9

  207. Mahesh TR et al (2024) Transformative breast cancer diagnosis using CNNs with optimized ReduceLROnPlateau and early stopping enhancements. Int J Comput Intell Syst 17(1):1–18. https://doi.org/10.1007/S44196-023-00397-1/TABLES/9

    Article  MathSciNet  Google Scholar 

  208. He Z et al (2022) Deconv-transformer (DecT): a histopathological image classification model for breast cancer based on color deconvolution and transformer architecture. Inf Sci (N Y) 608:1093–1112. https://doi.org/10.1016/J.INS.2022.06.091

    Article  Google Scholar 

  209. Chen X et al (2022) Transformers improve breast cancer diagnosis from unregistered multi-view mammograms. Diagnostics 12(7):1549. https://doi.org/10.3390/DIAGNOSTICS12071549

    Article  Google Scholar 

  210. Ayana G et al (2023) Vision-transformer-based transfer learning for mammogram classification. Diagnostics 13(2):178. https://doi.org/10.3390/DIAGNOSTICS13020178

    Article  Google Scholar 

  211. Thawkar S, Singh LK, Khanna M (2021) Multi-objective techniques for feature selection and classification in digital mammography. Intell Decis Technol 15(1):115–125. https://doi.org/10.3233/IDT-200049

    Article  Google Scholar 

  212. Moein Esfahani M, Sadati H (2022) Application of NSGA-II in channel selection of motor imagery EEG signals with common spatio-spectral patterns in BCI systems. In: 2022 8th international conference on control, instrumentation and automation, ICCIA 2022. https://doi.org/10.1109/ICCIA54998.2022.9737199

  213. Thawkar S, Sharma S, Khanna M, kumar Singh L (2021) Breast cancer prediction using a hybrid method based on Butterfly Optimization Algorithm and Ant Lion Optimizer. Comput Biol Med 139:104968. https://doi.org/10.1016/J.COMPBIOMED.2021.104968

    Article  Google Scholar 

  214. Thawkar S, Katta V, Parashar AR, Singh LK, Khanna M (2023) Breast cancer: a hybrid method for feature selection and classification in digital mammography. Int J Imaging Syst Technol 33(5):1696–1712. https://doi.org/10.1002/IMA.22889

    Article  Google Scholar 

  215. Singh LK, Khanna M, Singh R (2023) Artificial intelligence based medical decision support system for early and accurate breast cancer prediction. Adv Eng Softw 175:103338. https://doi.org/10.1016/J.ADVENGSOFT.2022.103338

    Article  Google Scholar 

  216. Singh LK, Khanna M, Singh R (2024) An enhanced soft-computing based strategy for efficient feature selection for timely breast cancer prediction: Wisconsin Diagnostic Breast Cancer dataset case. Multimed Tools Appl 1–66. https://doi.org/10.1007/S11042-024-18473-9/TABLES/26

  217. Roy S, Kumar R, Mittal V, Gupta D (2020) Classification models for Invasive Ductal Carcinoma Progression, based on gene expression data-trained supervised machine learning. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-020-60740-w

    Article  Google Scholar 

  218. Issa W, Ghoneim A (2019) A deep learning approach for breast cancer mass detection. Int J Adv Comput Sci Appl 10. https://doi.org/10.14569/IJACSA.2019.0100123

  219. Zuluaga-Gomez J, al Masry Z, Benaggoune K, Meraghni S, Zerhouni N (2021) A CNN-based methodology for breast cancer diagnosis using thermal images. Comput Methods Biomech Biomed Eng Imaging Vis 9(2):131–145. https://doi.org/10.1080/21681163.2020.1824685

    Article  Google Scholar 

  220. Xie J, Liu R, Luttrell J, Zhang C (2019) Deep learning based analysis of histopathological images of breast cancer. Front Genet 10(FEB). https://doi.org/10.3389/FGENE.2019.00080/FULL

  221. Cai H et al (2019) Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms. Comput Math Methods Med 2019. https://doi.org/10.1155/2019/2717454

  222. Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC-9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  223. Valvano G et al (2019) Convolutional neural networks for the segmentation of microcalcification in mammography imaging. J Healthc Eng 2019. https://doi.org/10.1155/2019/9360941

  224. Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W (2019) Deep learning to improve breast cancer detection on screening mammography. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-48995-4

    Article  Google Scholar 

  225. Wang Y et al (2020) Breast cancer image classification via multi-network features and dual-network orthogonal low-rank learning. IEEE Access 8:27779–27792. https://doi.org/10.1109/ACCESS.2020.2964276

    Article  Google Scholar 

  226. Zheng J, Lin D, Gao Z, Wang S, He M, Fan J (2020) Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 8:96946–96954. https://doi.org/10.1109/ACCESS.2020.2993536

    Article  Google Scholar 

  227. Hameed Z, Zahia S, Garcia-Zapirain B, Aguirre JJ, Vanegas AM (2020) Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors 20(16):4373. https://doi.org/10.3390/S20164373

    Article  Google Scholar 

  228. Ghosh S, Ghosh R, Sahay S, Patnaik S (2021) Detection of invasive ductal carcinoma from breast histopathology image using deep ensemble neural networks. Lect Notes Data Eng Commun Technol 62:103–114. https://doi.org/10.1007/978-981-33-4968-1_9/COVER

    Article  Google Scholar 

  229. Albashish D, Al-Sayyed R, Abdullah A, Ryalat MH, Ahmad Almansour N (2021) Deep CNN model based on VGG16 for breast cancer classification. In: 2021 international conference on information technology, ICIT 2021 - proceedings, pp 805–810. https://doi.org/10.1109/ICIT52682.2021.9491631

  230. Senthil Kumaran VN, Vijay M (2021) Diagnosing cancer cells using histopathological images with deep learning. In: 2021 international conference on wireless communications, signal processing and networking, WiSPNET 2021, pp 148–152. https://doi.org/10.1109/WISPNET51692.2021.9419468

  231. Davoudi K, Thulasiraman P (2021) Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem. Simulation 97(8):511–527. https://doi.org/10.1177/0037549721996031/ASSET/IMAGES/LARGE/10.1177_0037549721996031-FIG2.JPEG

    Article  Google Scholar 

  232. Meng W et al (2021) Computer-aided diagnosis evaluation of the correlation between magnetic resonance imaging with molecular subtypes in breast cancer. Front Oncol 11:2259. https://doi.org/10.3389/FONC.2021.693339/BIBTEX

    Article  Google Scholar 

  233. Huang Y et al (2021) Prediction of tumor shrinkage pattern to neoadjuvant chemotherapy using a multiparametric MRI-based machine learning model in patients with breast cancer. Front Bioeng Biotechnol 9:558. https://doi.org/10.3389/FBIOE.2021.662749/BIBTEX

    Article  Google Scholar 

  234. Khamparia A et al (2021) Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimens Syst Signal Process 32(2):747–765. https://doi.org/10.1007/S11045-020-00756-7/TABLES/6

    Article  Google Scholar 

  235. Masud M, Eldin Rashed AE, Hossain MS (2022) Convolutional neural network-based models for diagnosis of breast cancer. Neural Comput Appl 34(14):11383–11394. https://doi.org/10.1007/S00521-020-05394-5/FIGURES/6

    Article  Google Scholar 

  236. Rodrigues PS (2017) Breast ultrasound image. Mendeley Data 1. https://doi.org/10.17632/WMY84GZNGW.1

  237. Aljuaid H, Alturki N, Alsubaie N, Cavallaro L, Liotta A (2022) Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput Methods Programs Biomed 223:106951. https://doi.org/10.1016/J.CMPB.2022.106951

    Article  Google Scholar 

  238. Kulothungan V et al (2022) Burden of cancers in India - estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer 22(1):1–12. https://doi.org/10.1186/S12885-022-09578-1/FIGURES/4

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saket Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Patnaik, K.S. Convergence of various computer-aided systems for breast tumor diagnosis: a comparative insight. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19620-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19620-y

Keywords

Navigation