Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An enhanced fuzzy vault to secure the fingerprint templates

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Fingerprint-based biometric systems have significant advantages over the conventional authentication systems, which are based on passwords and tokens. However, these systems are needed to combat the increasing magnitude of identity theft of users enrolled in a fingerprint-based biometric system because the fingerprint information of a user cannot be changed if it is compromised. Moreover, it has been demonstrated in the literature that a fingerprint image can be reconstructed if the information of minutiae points is available. In this paper, a fuzzy vault based technique is proposed to prevent identity theft and secure the fingerprint information (essentially, minutiae points) stored in the database. We propose a novel technique to filter the genuine vault points from a combination of genuine and chaff points used in the fuzzy vault technique. Since minutiae points are used to construct the vault, it is a challenging task to align probe and gallery images during verification. In order to do that, a Principal Component Analysis (PCA) based alignment technique is also proposed to align the gallery and probe templates. The proposed technique is evaluated on three different Fingerprint Verification Competition (FVC) databases that come under the FVC2002 and FVC2004. Subsequently, the obtained results are compared with that of the recent existing techniques in the literature and are found to be superior in terms of the Genuine Acceptance Rate (GAR), False Acceptance Rate (FAR), and Equal Error Rate (EER).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: Application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  2. Bobkowska K, Nagaty K, Przyborski M (2019) Incorporating iris, fingerprint and face biometric for fraud prevention in e-passports using fuzzy vault. IET Image Process 13(13):2516–2528

    Article  Google Scholar 

  3. Bringer J, Chabanne H, Cohen G, Kindarji B, Zemor G (2008) Theoretical and practical boundaries of binary secure sketches. IEEE Trans Inf Forensics Secur 3(4):673–683

    Article  Google Scholar 

  4. Cavoukian A, Stoianov A (2009) Biometric encryption. Springer, In Encyclopedia of Cryptography and Security

    Google Scholar 

  5. Chen F, Zhou J, Yang C (2009) Reconstructing Orientation Field From Fingerprint Minutiae to Improve Minutiae-Matching Accuracy. IEEE Trans Image Process 18(7):1665–1670

    Article  MathSciNet  Google Scholar 

  6. Chen X, Tian J, Yang X, Zhang Y (2006) An algorithm for distorted fingerprint matching based on local triangle feature set. IEEE Trans Inf Forensics Secur 1(2):169–177

    Article  Google Scholar 

  7. Chikkerur S, Wu C, Govindaraju V (2004) A systematic approach for feature extraction in fingerprint images. In D. Zhang and A. K. Jain, editors, Biometric Authentication 344–350, Berlin, Heidelberg. Springer Berlin Heidelberg

  8. Feng J, Jain AK (2010) Fingerprint reconstruction: from minutiae to phase. IEEE Trans Pattern Analy Mach Intell 33(2):209–223

    Article  Google Scholar 

  9. Fingerprint Verification Competition-2002 Database, http://bias.csr.unibo.it/fvc2002/default.asp. last accessed: September 2020

  10. Fingerprint Verification Competition-2004 Database, http://bias.csr.unibo.it/fvc2004/databases.asp. last accessed: September 2020

  11. Hartloff J, Dobler J, Tulyakov S, Rudra A, Govindaraju V (2013) Towards fingerprints as strings: Secure indexing for fingerprint matching. In Proc. International Conference on Biometrics 1–6

  12. Imamverdiyev Y, Teoh ABJ, Kim J (2013) Biometric cryptosystem based on discretized fingerprint texture descriptors. Expert Syst Appl 40(5):1888–1901

    Article  Google Scholar 

  13. Jabid T, Kabir MH, Chae O (2010) Local directional pattern (LDP) A robust image descriptor for object recognition. In Proc. 7th IEEE International Conference on Advanced Video and Signal Based Surveillance 482–487

  14. Jain AK, Prabhakar S, Hong L, Pankanti S (2000) Filterbank-based fingerprint matching. IEEE Trans Image Process 9(5):846–859

    Article  Google Scholar 

  15. Jin Z, Lim MH, Teoh ABJ, Goi BM (2014) A non-invertible Randomized Graph-based Hamming Embedding for generating cancelable fingerprint template. Pattern Recogn Lett 42:137–147

    Article  Google Scholar 

  16. Juels A, Sudan M (2002) A fuzzy vault scheme. In Proc. IEEE International Symp on Inf Theory, Switzerland 408

  17. Juels A, Wattenberg M (1999) A fuzzy commitment scheme. In Proc. Computer and Communications Security, Singapore, pp 28–36

    Google Scholar 

  18. Kaur H, Khanna P (2016) Biometric template protection using cancelable biometrics and visual cryptography techniques. Multimed Tools Appl 75:16333–16361

    Article  Google Scholar 

  19. Lam HK, Hou Z, Yau WY, Chen TP, Li J (2008) A systematic topological method for fingerprint singular point detection. In Proc. 10th International Conference on Control, Automation, Robotics and Vision 967–972

  20. Li C, Hu J (2016) A security-enhanced alignment-free fuzzy vault-based fingerprint cryptosystem using pair-polar minutiae structures. IEEE Trans Inf Forensics Secur 11(3):543–555

    Article  Google Scholar 

  21. Li P, Yang X, Cao K, Tao X, Wang R, Tian J (2010) An alignment-free fingerprint cryptosystem based on fuzzy vault scheme. J Netw Comput Appl 33(3):207–220

    Article  Google Scholar 

  22. Li P, Yang X, Qiao H, Cao K, Liu E, Tian J (2012) An effective biometric cryptosystem combining fingerprints with error correction codes. Expert Syst Appl 39(7):6562–6574

    Article  Google Scholar 

  23. Lin H, Yifei W, Jain A (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20(8):777–789

    Article  Google Scholar 

  24. Loukhaoukha K, Refaey A, Zebbiche K, Shami A (2018) Efficient and secure cryptosystem for fingerprint images in wavelet domain. Multimed Tools Appl 77:9325–9339

    Article  Google Scholar 

  25. Mai G, Lim M-H, Yuen PC (2017) Binary feature fusion for discriminative and secure multi-biometric cryptosystems. Image Vis Comput 58:254–265

    Article  Google Scholar 

  26. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of Fingerprint Recognition, 2nd edn. Springer Publishing Company, Incorporated

    Book  Google Scholar 

  27. Nagar A, Rane S, Vetro A (2010) Privacy and security of features extracted from minutiae aggregates. In Proc. IEEE Int Conf Acoust Speech Signal Process 1826–1829

  28. Nandakumar K (2010) A fingerprint cryptosystem based on minutiae phase spectrum. In Proc. IEEE International Workshop on Information Forensics and Security 1–6

  29. Nandakumar K, Jain AK, Pankanti S (2007) Fingerprint-based fuzzy vault: Implementation and performance. IEEE Trans Inf Forensics Secur 2(4):744–757

    Article  Google Scholar 

  30. Nandakumar K, Nagar A, Jain AK (2007) Hardening fingerprint fuzzy vault using password. In Advances in Biometrics 927–937, Berlin, Heidelberg. Springer Berlin Heidelberg

  31. Neurotechnology, Verifinger SDK, http://www.neurotechnology.com. last accessed: September 2020

  32. Qiming L, Muchuan G, Ee-Chien C (2008) Fuzzy extractors for asymmetric biometric representations. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 1–6

  33. Rathgeb C, Uhl A (2011) A survey on biometric cryptosystems and cancelable biometrics. EURASIP J Inf Secur 3

  34. Ross A, Shah J, Jain AK (2007) From template to image: Reconstructing fingerprints from minutiae points. IEEE Trans on PAMI 29(4):544–560

    Article  Google Scholar 

  35. Sandhya M, Prasad MVNK (2015) k-Nearest Neighborhood Structure (k-NNS) based alignment-free method for fingerprint template protection. Proc of ICB 2015:386–393

    Google Scholar 

  36. Sandhya M, Prasad MVNK, Chillarige RR (2016) Generating cancellable fingerprint templates based on Delaunay triangle feature set construction. IET Biometrics 5(2):131–139

    Article  Google Scholar 

  37. Tams B, Mihăilescu P, Munk A (2015) Security considerations in minutiae-based fuzzy vaults. IEEE Trans Inf Forensics Secur 10(5):985–998

    Article  Google Scholar 

  38. Teoh A, Jaihie K(2007) Secure biometric template protection in fuzzy commitment scheme. IEICE Electronics Express 4(23):724–730

  39. Trivedi AK, Thounaojam DM, Pal S (2020) Non-invertible cancellable fingerprint template for fingerprint biometric. Comput Secur 90:101690

    Article  Google Scholar 

  40. Uludag U, Jain A (2006) Securing fingerprint template: Fuzzy vault with helper data. In Proc. 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06) 163

  41. Ur Rehman HZ, Lee S (2018) Automatic image alignment using principal component analysis. IEEE Access 6:72063–72072

  42. Wang H, Xingbo D, Jin Z, Teoh ABJ, Tistarelli M (2020) Security analysis of cancellable biometrics using constrained-optimized similarity-based attack. arXiv: 2006.13051

  43. Xingbo D, Jin Z, Teoh ABJ (2019) A genetic algorithm enabled similarity-based attack on cancellable biometrics. arXiv: 1905.03021

  44. Yang W, Hu J, Wang S (2013) A delaunay triangle group based fuzzy vault with cancellability. In Proc. 6th Int. Congr Image Signal Processing 03:1676–1681

  45. Yang W, Hu J, Wang S, Stojmenovic M (2014) An alignment-free fingerprint bio-cryptosystem based on modified voronoi neighbor structures. Pattern Recogn 47(3):1309–1320

    Article  Google Scholar 

  46. Yang W, Wang S, Hu J, Zheng G, Valli C (2018) A fingerprint and finger-vein based cancelable multi-biometric system. Pattern Recogn 78:242–251

    Article  Google Scholar 

  47. Yang W, Hu J, Wang S, Yang J (2013) Cancelable Fingerprint Templates with Delaunay Triangle-Based Local Structures. In Cyberspace Safety and Security 81–91. Springer International Publishing

  48. Zhu E, Guo X, Yin J (2016) Walking to singular points of fingerprints. Pattern Recogn 56:116–128

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Visvesvaraya PhD Scheme, MeitY, Govt. of India, Unique Awardee Number: MEITY-PHD-375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Singh Baghel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghel, V.S., Prakash, S. & Agrawal, I. An enhanced fuzzy vault to secure the fingerprint templates. Multimed Tools Appl 80, 33055–33073 (2021). https://doi.org/10.1007/s11042-021-11325-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11325-w

Keywords

Navigation