Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Local sparsity preserving projection and its application to biometric recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Dimensionality reduction techniques based on sparse representation have drawn great attentions recently and they are successfully applied to biometric recognition. In this paper, a new unsupervised dimensionality reduction method called Local Sparsity Preserving Projection (LSPP) is proposed. Unlike the traditional dimensionality reduction methods based on sparse representation which only preserve the sparse reconstructive relationship, LSPP preserves sparsity and locality characteristics of the data simultaneously. In LSPP, a training sample could be more possibly represented by training samples from the same class and a more accurate sparse reconstructive weight matrix is obtained. Thus, LSPP has more powerful discriminative ability than traditional dimensionality reduction methods. As kernel extension of LSPP, Kernel Local Sparsity Preserving Projection (KLSPP) which is more effective for nonlinear data is also presented. In the experiments on several biometric databases, the proposed methods obtain higher recognition rates and verification rates and are computationally more efficient than the traditional dimensionality reduction methods based on sparse representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmed AA, Traore I (2014) Biometric recognition based on free-text keystroke dynamics. IEEE Transactions on Cybernetics 44:458–472

    Article  Google Scholar 

  2. Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209:237–260

    Article  MathSciNet  MATH  Google Scholar 

  3. Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection, pattern analysis and machine intelligence. IEEE Transactions on 19:711–720

    Google Scholar 

  4. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15:1373–1396

    Article  MATH  Google Scholar 

  5. Bengio Y, Paiement JFO, Vincent P, Delalleau O, Le Roux N, Ouimet M (2004) Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. Adv Neural Inf Proces Syst 16(16):177–184

    Google Scholar 

  6. Bin C, Jianchao Y, Shuicheng Y, Yun F, Huang TS (2010) Learning with l(1)-graph for image analysis, image processing. IEEE Transactions on 19:858–866

    MathSciNet  MATH  Google Scholar 

  7. Cai D, He X, Han J (2007) Isometric projection, Proceedings of the National Conference on Artificial Intelligence), pp. 528–533.

  8. Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies?, information theory. IEEE Transactions on 52:5406–5425

    MathSciNet  MATH  Google Scholar 

  9. Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59:1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen SSB, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43:129–159

    Article  MathSciNet  MATH  Google Scholar 

  11. Clemmensen L, Hastie T, Witten D, Ersbøll B (2011) Sparse discriminant analysis. Technometrics 53:406–413

    Article  MathSciNet  Google Scholar 

  12. Delac K, Grgic M (2004) A survey of biometric recognition methods, Electronics in Marine. Proceedings Elmar 2004. 46th International Symposium 2004), pp. 184–193.

  13. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal l(1)-norm solution is also the sparsest solution. Commun Pure Appl Math 59:797–829

    Article  MathSciNet  MATH  Google Scholar 

  14. Elhamifar E, Vidal R (2009)Sparse subspace clustering, Computer Vision and Pattern Recognition, . CVPR 2009. IEEE Conference on 2009), pp. 2790–2797.

  15. Gui J, Sun ZA, Jia W, Hu RX, Lei YK, Ji SW (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recogn 45:2884–2893

    Article  MATH  Google Scholar 

  16. He X, Niyogi P (2003) Locality preserving projections, Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada).

  17. He X, Cai D, Yan S, Zhang H.-J. (2005) Neighborhood preserving embedding, Computer Vision. ICCV 2005. Tenth IEEE International Conference on, (IEEE 2005), pp. 1208–1213.

  18. Hwann-Tzong C, Huang-Wei C, Tyng-Luh L (2005) Local discriminant embedding and its variants, Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on 2005), vol. 842, pp. 846–853

  19. Jain AK (2007) Technology: biometric recognition. Nature 449:38–40

    Article  Google Scholar 

  20. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. Circuits and Systems for Video Technology, IEEE Transactions on 14:4–20

    Article  Google Scholar 

  21. Jianchao Y, Wright J, Huang T, Yi M (2008) Image super-resolution as sparse representation of raw image patches, Computer Vision and Pattern Recognition. CVPR 2008. IEEE Conference on 2008), pp. 1–8.

  22. Jing X-Y, Yao Y-F, Zhang D, Yang J-Y, Li M (2007) Face and palmprint pixel level fusion and kernel DCV-RBF classifier for small sample biometric recognition. Pattern Recogn 40:3209–3224

    Article  MATH  Google Scholar 

  23. Lai Z, Xu Y, Chen Q, Yang J, Zhang D (2014) Multilinear sparse principal component analysis. IEEE Transactions on Neural Networks and Learning Systems 25:1942–1950

    Article  Google Scholar 

  24. Lai Z, Wong WK, Xu Y, Yang J, Zhang D (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Transactions on Neural Networks and Learning Systems 27:723–735

    Article  MathSciNet  Google Scholar 

  25. Liu F, Zhang D, Shen L (2015) Study on novel curvature features for 3D fingerprint recognition. Neurocomputing 168:599–608

    Article  Google Scholar 

  26. Lou S, Zhao X, Chuang Y, Yu H, Zhang S (2016) Graph regularized sparsity discriminant analysis for face recognition, Neurocomputing, 173. Part 2:290–297

    Google Scholar 

  27. Lu C-Y, Huang D-S (2013) Optimized projections for sparse representation based classification. Neurocomputing 113:213–219

    Article  Google Scholar 

  28. Lu G-F, Jin Z, Zou J (2012) Face recognition using discriminant sparsity neighborhood preserving embedding. Knowl-Based Syst 31:119–127

    Article  Google Scholar 

  29. Ly NH, Du Q, Fowler JE (2014) Sparse graph-based discriminant analysis for Hyperspectral imagery. IEEE Trans Geosci Remote Sens 52:3872–3884

    Article  Google Scholar 

  30. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. Multiscale Model Simul 7:214–241

    Article  MathSciNet  MATH  Google Scholar 

  31. Mika S, Ratsch G, Weston J, Scholkopf B, Muller K (1999) Fisher discriminant analysis with kernels, Neural Networks for Signal Processing IX. Proceedings of the 1999 I.E. Signal Processing Society Workshop. 1999), pp. 41–48.

  32. Qiao LS, Chen SC, Tan XY (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43:331–341

    Article  MATH  Google Scholar 

  33. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  34. Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319

    Article  Google Scholar 

  35. Shen L, Bai L, Ji Z (2011) FPCODE: an efficient approach for multi-modal biometrics. Int J Pattern Recognit Artif Intell 25:273–286

    Article  MathSciNet  Google Scholar 

  36. Shi X, Yang Y, Guo Z, Lai Z (2014) Face recognition by sparse discriminant analysis via joint L2,1-norm minimization. Pattern Recogn 47:2447–2453

    Article  Google Scholar 

  37. Shuicheng Y, Dong X, Benyu Z, Hong-Jiang Z, Qiang Y, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction, pattern analysis and machine intelligence. IEEE Transactions on 29:40–51

    Google Scholar 

  38. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  39. Turk MA, Pentland AP (1991) Face recognition using eigenfaces, computer vision and pattern recognition. Proceedings CVPR ‘91., IEEE Computer Society Conference on 1991), pp. 586–591.

  40. Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction using two-dimensional maximum embedding difference. Inf Sci 274:55–69

    Article  Google Scholar 

  41. Wright J, Yang AY, Ganesh A, Sastry SS, Yi M (2009) Robust face recognition via sparse representation, pattern analysis and machine intelligence. IEEE Transactions on 31:210–227

    Google Scholar 

  42. Xiaofei H, Shuicheng Y, Yuxiao H, Niyogi P, Hong-Jiang Z (2005) Face recognition using Laplacianfaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27:328–340

    Article  Google Scholar 

  43. Xu Y, Zhong A, Yang J, Zhang D (2010) LPP solution schemes for use with face recognition. Pattern Recogn 43:4165–4176

    Article  MATH  Google Scholar 

  44. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on Circuits and Systems for Video Technology 21:1255–1262

    Article  MathSciNet  Google Scholar 

  45. Yan P, Bowyer KW (2007) Biometric recognition using 3D ear shape. IEEE Trans Pattern Anal Mach Intell 29:1297–1308

    Article  Google Scholar 

  46. Yan Y, Wang H, Chen S, Cao X, Zhang D (2016) Quadratic projection based feature extraction with its application to biometric recognition. Pattern Recogn 56:40–49

    Article  Google Scholar 

  47. Yang W, Sun C, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recogn 44:1649–1657

    Article  MATH  Google Scholar 

  48. Yang J, Chu DL, Zhang L, Xu Y, Yang JY (2013) Sparse representation classifier steered discriminative projection with application to face recognition. IEEE Transactions on Neural Networks and Learning Systems 24:1023–1035

    Article  Google Scholar 

  49. Yin J, Yang W-K (2013) Kernel sparsity preserving projections and its application to biometrics. Dianzi Xuebao (Acta Electronica Sinica) 41:639–645

    Google Scholar 

  50. Yin J, Liu Z, Jin Z, Yang W (2012) Kernel sparse representation based classification. Neurocomputing 77:120–128

    Article  Google Scholar 

  51. Zhang D (2004) Palmprint authentication (Kluwer Academic).

  52. Zhang Z-y, Zha H-y (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai University (English Edition) 8:406–424

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang TH, Yang J, Zhao DL, Ge XL (2007) Linear local tangent space alignment and application to face recognition. Neurocomputing 70:1547–1553

    Article  Google Scholar 

  54. Zhang Q, Cai Y, Xu X (2013) Maximum margin sparse representation discriminative mapping with application to face recognition. OPTICE 52:027202–027202

    Article  Google Scholar 

  55. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15:265–286

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants No. 31470954, No. 61403251 and No. 61603243, Shanghai Municipal Natural Science Foundation under Grants No. 13ZR1455600 and No. 14ZR1419700, the Innovation Foundation of Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education under Grants No. JYB201607.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Lai, Z., Zeng, W. et al. Local sparsity preserving projection and its application to biometric recognition. Multimed Tools Appl 77, 1069–1092 (2018). https://doi.org/10.1007/s11042-016-4338-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4338-6

Keywords

Navigation