Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Comparative Texture Analysis Based on NECT and CECT Images to Differentiate Lung Adenocarcinoma from Squamous Cell Carcinoma

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The purpose of the study was to compare the texture based discriminative performances between non-contrast enhanced computed tomography (NECT) and contrast-enhanced computed tomography (CECT) images in differentiating lung adenocarcinoma (ADC) from squamous cell carcinoma (SCC) patients. Eighty-seven lung cancer subjects were enrolled in the study, including pathologically proved 47 ADC patients and 40 SCC patients, and 261 texture features were extracted from the manually delineated region of interests on CECT and NECT images respectively. Fisher score was then used to select the effective discriminative texture features between groups, and the selected texture features were adopted to differentiate ADC from SCC using Support Vector Machine and Leave-one-out cross-validation. Both NECT and CECT images could achieve the same best classification accuracy of 95.4%, and most of the informative features were from the gray-level co-occurrence matrix. In addition, CECT images were found with enhanced texture features compared with NECT images, and combining texture features of CECT and NECT images together could further improve the prediction accuracy. Besides the texture feature, the tumor location information also contributed to the differential diagnosis between ADC and SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. et al., Cancer statistics, 2010. CA Cancer J. Clin. 60(5):277–300, 2010.

    Article  PubMed  Google Scholar 

  2. Yang, P., Allen, M. S., Aubry, M. C. et al., Clinical features of 5,628 primary lung cancer patients: Experience at Mayo Clinic from 1997 to 2003. Chest 128(1):452–462, 2005.

    Article  PubMed  Google Scholar 

  3. Scagliotti, G., Hanna, N., Fossella, F. et al., The differential efficacy of pemetrexed according to NSCLC histology: A review of two phase III studies. Oncologist 14(3):253–263, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Shroff, G. S., Benveniste, M. F., de Groot, P. M. et al., Targeted therapy and imaging findings. J. Thorac. Imaging 32(5):313–322, 2017.

    Article  PubMed  Google Scholar 

  5. Yano, M., Yoshida, J., Koike, T. et al., The outcomes of a limited resection for non-small cell lung cancer based on differences in pathology. World J. Surg. 40(11):2688–2697, 2016.

    Article  PubMed  Google Scholar 

  6. Thunnissen, E., Noguchi, M., Aisner, S. et al., Reproducibility of histopathological diagnosis in poorly differentiated NSCLC: An international multiobserver study. J. Thorac. Oncol. 10(1):1354–1362, 2015.

    Article  Google Scholar 

  7. Swensen, S. J., Viggiano, R. W., Midthun, D. E. et al., Lung nodule enhancement at CT: Multicenter study. Radiology 214(1):73–80, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Dilger, S. K., Uthoff, J., Judisch, A. et al., Improved pulmonary nodule classification utilizing quantitative lung parenchyma features. J. Med. Imaging 2(4):041004, 2015.

    Article  Google Scholar 

  9. Davnall, F., Yip, C. S., Ljungqvist, G. et al., Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging. 3(6):573–589, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Orozco, H. M., OOV, V., VGC, S. et al., Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed. Eng. Online 14(1):1–20, 2015.

    Article  Google Scholar 

  11. Dennie, C., Thornhill, R., Sethivirmani, V. et al., Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant. Imaging Med. Surg. 6(1):6–15, 2016.

    PubMed  PubMed Central  Google Scholar 

  12. Hwang, I. P., Park, C. M., Park, S. J. et al., Persistent pure ground-glass nodules larger than 5 mm: Differentiation of invasive pulmonary adenocarcinomas from preinvasive lesions or minimally invasive adenocarcinomas using texture analysis. Investig. Radiol. 50(11):798–804, 2015.

    Article  CAS  Google Scholar 

  13. Ganeshan, B., Panayiotou, E., Burnand, K. et al., Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: A potential marker of survival. Eur. Radiol. 22(4):796–802, 2012.

    Article  PubMed  Google Scholar 

  14. Giganti, F., Marra, P., Ambrosi, A. et al., Pre-treatment MDCT-based texture analysis for therapy response prediction in gastric cancer: Comparison with tumour regression grade at final histology. Eur. J. Radiol. 90:129–137, 2017.

    Article  PubMed  Google Scholar 

  15. Haider, M. A., Vosough, A., Khalvati, F. et al., CT texture analysis: A potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17(1):4, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fried, D. V., Tucker, S. L., Zhou, S. et al., Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 90(4):834–842, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Emaminejad, N., Qian, W., Kang, Y. et al., Exploring new quantitative CT image features to improve assessment of lung cancer prognosis. In: SPIE Medical Imaging, 2015, 94141M.

  18. Balaji, G., Sandra, A., RCD, Y. et al., Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10(1):137–143, 2010.

    Article  Google Scholar 

  19. Ganeshan, B., Goh, V., Mandeville, H. C. et al., Non-small cell lung cancer: Histopathologic correlates for texture parameters at CT. Radiology 266(1):326–336, 2013.

    Article  PubMed  Google Scholar 

  20. Wu, W., Chintan, P., Patrick, G. et al., Exploratory study to identify radiomics classifiers for lung cancer histology. Front. Oncol. 6(Suppl 2):71, 2016.

    PubMed  PubMed Central  Google Scholar 

  21. Materka, A., and Klepaczko, A., MaZda-A software package for image texture analysis. Comput. Methods Prog. Biomed. 94(1):66–76, 2009.

    Article  Google Scholar 

  22. Echegaray, S., Nair, V., Kadoch, M. et al., A rapid segmentation-insensitive “digital biopsy” method for Radiomic feature extraction: Method and pilot study using CT images of non-small cell lung cancer. Tomography. 2(4):283–294, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haralick, R. M., Shanmugam, K., and Dinstein, I., Textural features for image classification. IEEE Trans. Syst. Man Cybern. smc. 3(6):610–621, 1973.

    Article  Google Scholar 

  24. Szczypiński, P. M., Strzelecki, M., Materka, A. et al., MaZda – the software package for textural analysis of biomedical images. Berlin: Springer, 2009, 73–84.

    Google Scholar 

  25. Duda, R. O., Hart, P. E., and Stork, D. G., Pattern classification. 2nd edition, Wiley, New York, 2001.

  26. Mourão-Miranda, J., Bokde, A. L., Born, C. et al., Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data. NeuroImage 28(4):980–995, 2005.

    Article  PubMed  Google Scholar 

  27. Chang, C. C., and Lin, C. J., LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3):1–27, 2011.

    Article  Google Scholar 

  28. Travis, W. D., Brambilla, E., Nicholson, A. G. et al., The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol. 10(9):1243–1260, 2015.

    Article  PubMed  Google Scholar 

  29. Lubner, M. G., Smith, A. D., Sandrasegaran, K. et al., CT texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics A Review Publication of the Radiological Society of North America Inc. 37(5):1483, 2017.

    Article  PubMed  Google Scholar 

  30. Aerts, H. J., Velazquez, E. R., Leijenaar, R. T. et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5:4006, 2014.

    Article  CAS  PubMed  Google Scholar 

  31. Gillies, R. J., Kinahan, P. E., and Hricak, H., Radiomics: Images are more than pictures, they are data. Radiology 278(2):563–577, 2016.

    Article  PubMed  Google Scholar 

  32. Phillips, L., Ajaz, M., Ezhil, V. et al., Clinical applications of textural analysis in non-small cell lung cancer. Br. J. Radiol. 91:20170267, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vince, D. G., Dixon, K. J., Cothren, R. M. et al., Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Comput. Med. Imaging Graph. 24(4):221–229, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, J., Tong, L., Wang, L. et al., Texture analysis of multiple sclerosis: A comparative study. Magn. Reson. Imaging 26(8):1160–1166, 2008.

    Article  PubMed  Google Scholar 

  35. Yan, L., Liu, Z., Wang, G. et al., Angiomyolipoma with minimal fat: Differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad. Radiol. 22(9):1115–1121, 2015.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (grant numbers 81220108007), Beijing Natural Science Foundation (No. 4122018). Bin Jing was supported by Beijing Natural Science Foundation (No. 7174282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the national research committee.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jing, B., Han, W. et al. A Comparative Texture Analysis Based on NECT and CECT Images to Differentiate Lung Adenocarcinoma from Squamous Cell Carcinoma. J Med Syst 43, 59 (2019). https://doi.org/10.1007/s10916-019-1175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1175-y

Keywords

Navigation