We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.
Similar content being viewed by others
References
C. C. Heyde, Quasi-Likelihood and its Application: A General Approach to Optimal Parameter Estimation, Springer, New York, NY (1997).
H. Dette and T. Holland-Letz, “A geometric characterization of c-optimal designs for heteroscedastic regression,” Ann. Stat. 37, 4088–4103 (2009).
L. D. Brown and M. Levine, “Variance estimation in nonparametric regression via the difference sequence method,” Ann. Stat. 35, No. 5, 2219–2232 (2007).
L. Wang, L. D. Brown, T. T. Cai, and M. Levine, “Effect of mean on variance function estimation in nonparametric regression,” Ann. Stat. 36, No. 2, 646–664 (2008).
G. A. F. Seber and A. J. Lee, Linear Regression Analysis, Wiley, Hoboken, NJ (2003).
R. J. Carrol and D. Ruppert, “A comparison between maximum likelihood and generalized least squares in heteroscedastic linear model,” J. Am. Stat. Assoc. 77, 878–882 (1982).
Yu. Yu. Linke and A. I. Sakhanenko, “Asymptotically optimal estimation in the linear regression problem in the case of violation of some classical assumptions,” [in Russian], Sib. Math. J. 50, No. 2, 302–315 (2009).
I. S. Borisov, “Stability of the partial sum process of residuals in a multiple linear regression model” [Russian], Sib. ` Elektron. Mat. Izv. 10, 727–732 (2013).
W. Hoeffding, “On the distribution of the expected values of the order statistics,” Ann. Math. Statist. 24, No. 1, 93–100 (1953).
I. S. Borisov, “On the sum of the variances of the order statistics for samples of dependent observations” [in Russian], Sib. Èlektron. Mat. Izv. 11, 857–862 (2014).
Yu. Yu. Linke, “On the asymptotics of distributions of two-step statistical estimators,” Sib. Math. J. 52, No. 4, 665–681 (2011).
Yu. Yu. Linke and A. I. Sakhanenko, “On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter” [in Russian], Sib. Èlektron. Mat. Izv. 10, 627–640 (2013).
J. Hájek and Z. Šidák, Theory of Rank Tests, Academic Press, New York etc. (1967).
V. V. Petrov, Sums of Independent Random Variables, Springer, Berlin etc. (1975).
S. A. Utev, “Sums of random variables under the 𝜑-mixing” [in Russian] In: Asymptotic Analysis of the Distributions of Stochastic Processes, Nauka, Novosibirsk (1989).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki 17, No. 2, 2017, pp. 39-51.
Rights and permissions
About this article
Cite this article
Linke, Y.Y. Two-Step Estimation in a Heteroscedastic Linear Regression Model. J Math Sci 231, 206–217 (2018). https://doi.org/10.1007/s10958-018-3816-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-018-3816-y