Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We extend some results of nonsmooth analysis from the Euclidean context to the Riemannian setting. Particularly, we discuss the concepts and some properties, such as the Clarke generalized covariant derivative, upper semicontinuity, and Rademacher theorem, of locally Lipschitz continuous vector fields on Riemannian settings. In addition, we present a version of the Newton method for finding a singularity of a special class of locally Lipschitz continuous vector fields. For mild conditions, we establish the well-definedness and local convergence of the sequence generated using the method in a neighborhood of a singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220(2), 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38(1), A567–A597 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ghahraei, E., Hosseini, S., Pouryayevali, M.R.: Pseudo–Jacobian and characterization of monotone vector fields on Riemannian manifolds. J. Convex Anal. 24(1), 149–168 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Grohs, P., Hosseini, S.: Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds. IMA J. Numer. Anal. 36(3), 1167–1192 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hosseini, S., Pouryayevali, M.R.: Nonsmooth optimization techniques on Riemannian manifolds. J. Optim. Theory Appl. 158(2), 328–342 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hosseini, S., Uschmajew, A.: A Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds. SIAM J. Optim. 27(1), 173–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359(8), 3687–3732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergmann, R., Weinmann, A.: A second-order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. J. Math. Imaging Vision 55(3), 401–427 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rampazzo, F., Sussmann, H.J.: Commutators of flow maps of nonsmooth vector fields. J. Differ. Equ. 232(1), 134–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clarke, F.H.: Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, vol. 5, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990)

  11. Shub, M.: Some Remarks on Dynamical Systems and Numerical Analysis. In: Dynamical Systems and Partial Differential Equations (Caracas, 1984), pp. 69–91. Universidad Simon Bolivar, Caracas (1986)

  12. Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C., Wang, J.: Newton’s method on riemannian manifolds: Smale’s point estimate theory under the \(\gamma \)-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Hamiltonian and gradient flows, algorithms and control. Fields Inst. Commun., vol. 3, pp. 113–136. American Mathematical Society, Providence, RI (1994)

  15. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, vol. 297. Kluwer Academic Publishers Group, Dordrecht (1994)

    Book  MATH  Google Scholar 

  16. Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fernandes, T.A., Ferreira, O.P., Yuan, J.: On the superlinear convergence of Newton’s method on Riemannian manifolds. J. Optim. Theory Appl. 173(3), 828–843 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lang, S.: Differential and Riemannian manifolds, Graduate Texts in Mathematics, vol. 160, 3rd edn. Springer, New York (1995)

  19. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence, RI (1996). Translated from the 1992 Japanese original by the author

  20. Tu, L.W.: An Introduction to Manifolds, 2nd edn. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  21. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, 2nd edn. Springer, New York (2013)

  22. Canary, R.D., Epstein, D., Marden, A.: Fundamentals of Hyperbolic Geometry: Selected Expositions, London Mathematical Society Lecture Note Series, vol. 328. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  23. Dedieu, J.P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: convariant alpha theory. IMA J. Numer. Anal. 23(3), 395–419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston, MA (1992). Translated from the second Portuguese edition by Francis Flaherty

  25. Spivak, M.: A Comprehensive Introduction to Differential Geometry. Vol. II, 3rd edn. Publish or Perish, Inc., Wilmington, DE (1999)

  26. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  27. da Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balkan J. Geom. Appl. 3(2), 89–100 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

    MATH  Google Scholar 

  29. Hosseini, S., Pouryayevali, M.R.: Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. 74(12), 3884–3895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Programm. 58(3), 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lageman, C., Helmke, U., Manton, J.H.: The nonsmooth Newton method on Riemannian manifolds. Unpublished Notes (https://scholar.lib.vt.edu/MTNS/Papers/108.pdf)

  33. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  34. Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings. 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014). A view from variational analysis

  35. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Optimization and Computation Series, 3rd edn. Athena Scientific, Belmont, MA (2016)

    Google Scholar 

  36. Ferreira, O.P., Iusem, A.N., Németh, S.Z.: Projections onto convex sets on the sphere. J. Optim. Theory Appl. 57(3), 663–676 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Ferreira, O.P., Iusem, A.N., Németh, S.Z.: Concepts and techniques of optimization on the sphere. TOP 22(3), 1148–1170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering. Springer, Cham (2014)

    Google Scholar 

  39. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18(1), 304–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES, FAPEG, and CNPq Grants 408151/2016-1 and 302473/2017-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orizon P. Ferreira.

Additional information

Communicated by Sándor Zoltán Németh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, F.R., Ferreira, O.P. Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds. J Optim Theory Appl 185, 522–539 (2020). https://doi.org/10.1007/s10957-020-01656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01656-3

Keywords

Mathematics Subject Classification

Navigation