Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3–12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott, L.F., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Physical Review E, 48, 1483–1490.

    Article  Google Scholar 

  • Amilhon, B., Huh, C.L., Manseau, F., Ducharme, G., Nichol, H., Adamantidis, A., & Williams, S. (2015). Parvalbumin interneurons of Hippocampus tune population activity at theta frequency. Neuron, 86(5), 1277–1289. doi:10.1016/j.neuron.2015.05.027.

    Article  CAS  PubMed  Google Scholar 

  • Apfaltrer, F., Ly, C., & Tranchina, D. (2006). Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods. Network: Computation in Neural Systems, 17, 373–418.

    Article  Google Scholar 

  • Augustin, M., Ladenbauer, J., & Obermayer, K. (2013). How adaptation shapes spike rate oscillations in recurrent neuronal networks. Frontiers in Computational Neuroscience, 7, 9. doi:10.3389/fncom.2013.00009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Battaglia, F.P., Benchenane, K., Sirota, A., Pennartz, C.M., & Wiener, S.I. (2011). The hippocampus: hub of brain network communication for memory. Trends in Cognitive Sciences, 15(7), 310–318. doi:10.1016/j.tics.2011.05.008.

    PubMed  Google Scholar 

  • Bezaire, M.J., & Soltesz, I. (2013). Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus, 23(9), 751–785. doi:10.1002/hipo.22141.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637–3642.

    Article  PubMed  Google Scholar 

  • Butera, R., Rinzel, J., & Smith, J. (1999a). Models of respiratory rhythm generation in pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 81, 382–397.

  • Butera, R., Rinzel, J., & Smith, J. (1999b). Models of respiratory rhythm generation in pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. Journal of Neurophysiology, 81, 398–415.

  • Buzsaki, G. (2011). Hippocampus. Scholarpedia, 6(1), 1468. doi:10.4249/scholarpedia.1468.

    Article  Google Scholar 

  • Destexhe, A., Mainen, Z., & Sejnowski, T. (1994). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 14–18.

    Article  Google Scholar 

  • Deuchars, J., & Thomson, A. (1996). CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling. Neuroscience, 74(4), 1009–1018. 10.1016/0306-45229600251-5.

    CAS  PubMed  Google Scholar 

  • Dur-E-Ahmad, M., Nicola, W., Campbell, S.A., & Skinner, F.K. (2012). Network bursting using experimentally constrained single compartment CA3 hippocampal neuron models with adaptation. Journal of Computational Neuroscience, 33(1), 21–40. doi:10.1007/s10827-011-0372-6.

    Article  PubMed  Google Scholar 

  • Ermentrout, G.B., & Terman, D.H. (2010). Mathematical foundations of neuroscience. New York: Springer.

    Book  Google Scholar 

  • Ferguson, K., Huh, C., Amilhon, B., Williams, S., & Skinner F. (2014). Parvalbumin-positive interneurons play a key role in determining the frequency and power of CA1 theta oscillations in experimentally constrained network models, program No. 303.22. 2014. In Neuroscience Meeting Planner. Washington, DC Society for Neuroscience.

  • Ferguson, K.A., Huh, C.Y.L., Amilhon, B., Williams, S., & Skinner, F.K. (2013). Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Frontiers in Computational Neuroscience, 7, 144. doi:10.3389/fncom.2013.00144.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferguson, K.A., Huh, C Y L, Amilhon, B., Williams, S., & Skinner, F.K. (2015). Simple, biologically-constrained CA1 pyramidal cell models using an intact, whole hippocampus context. F1000Research, 3, 104. doi:10.12688/f1000research.3894.2.

    Google Scholar 

  • Gerstner, W., & Brette, R. (2009). Adaptive exponential integrate-and-fire model. Scholarpedia, 4(6), 8427.

    Article  Google Scholar 

  • Goodman, D.F.M., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192–197. doi:10.3389/neuro.01.026.2009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goutagny, R., Jackson, J., & Williams, S. (2009). Self-generated theta oscillations in the hippocampus. Nature Neuroscience, 12(12), 1491–1493. doi:10.1038/nn.2440.

    Article  CAS  PubMed  Google Scholar 

  • Gutkin, B., & Zeldenrust, F. (2014). Spike frequency adaptation. Scholarpedia, 9(2), 30643.

    Article  Google Scholar 

  • Hansel, D., & Mato, G. (2001). Existence and stability of persistent states in large neuronal networks. Physical Review Letters, 86(18), 4175.

    Article  CAS  PubMed  Google Scholar 

  • Hansel, D., & Mato, G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural Computation, 15, 1–56.

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo, M. (2011). Models of hippocampus. Scholarpedia, 6(5), 1371. doi:10.4249/scholarpedia.1371.

    Article  Google Scholar 

  • Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G.A., & Jaffe, D.B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18(4), 411–424. doi:10.1002/hipo.20404.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho, E.C.Y., Zhang, L., & Skinner, F.K. (2009). Inhibition dominates in shaping spontaneous CA3 hippocampal network activities in vitro. Hippocampus, 19(2), 152–165. doi:10.1002/hipo.20493.

    Article  PubMed  Google Scholar 

  • Ho, E.C.Y., Strüber, M., Bartos, M., Zhang, L., & Skinner, F.K. (2012). Inhibitory Networks of Fast-Spiking Interneurons Generate Slow Population Activities due to Excitatory Fluctuations and Network Multistability. The Journal of Neuroscience, 32(29), 9931–9946. doi:10.1523/JNEUROSCI.5446-11.2012.

    Article  CAS  PubMed  Google Scholar 

  • Ho, E.C.Y., Eubanks, J.H., Zhang, L., & Skinner, F.K. (2014). Network models predict that reduced excitatory fluctuations can give rise to hippocampal network hyper-excitability in MeCP2-null mice. PLoS ONE, 9 (3), e91148.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huh, C., Amilhon, B., Ferguson, K., Torres-Platas, S., Manseau, F., Peach, J., Scodras, S., Mechawar, N., Skinner, F., & Williams, S. (2015). Excitatory inputs determine phase-locking strength and spike-timing of CA1 stratum oriens/alveus parvalbumin and somatostatin interneurons during intrinsically generated hippocampal theta rhythm. In Revision.

  • Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE transactions on neural networks, 14(6), 1569–1572. doi:10.1109/TNN.2003.820440.

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick, Z.P., & Ermentrout, B. (2011). Sparse gamma rhythms arising through clustering in adapting neuronal networks. PLoS Comput Biol, 7(11), e1002281. doi:10.1371/journal.pcbi.1002281.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knight, B.W. (2000). Dynamics of encoding in neuron populations: some general mathematical features. Neural Computation, 12, 473–518.

    Article  CAS  PubMed  Google Scholar 

  • Krupa, M., Gielen, S., & Gutkin, B. (2014). Adaptation and shunting inhibition leads to pyramidal/interneuron gamma with sparse firing of pyramidal cells. Journal of Computational Neuroscience, 37(2), 357–376. doi:10.1007/s10827-014-0508-6.

  • Latham, P.E., Richmond, B.J., Nelson, P.G., & Nirenberg, S. (2000). Intrinsic dynamics in neuronal networks. I. Theory. Journal of Neurophysiology, 83(2), 808–827.

    CAS  PubMed  Google Scholar 

  • Lisman, J.E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20(1), 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Loken, C., Gruner, D., Groer, L, Peltier, R., Bunn, N., Craig, M., Henriques, T., Dempsey, J., Yu, C.H., Chen, J., Dursi, J., Chong, J., Northrup, S., Pinto, J., Knecht, N., & Van Zon, R. (2010). Scinet: Lessons learned from building a power-efficient top-20 system and data centre. Journal of Physics: Conference Series, 256, 012026.

    Google Scholar 

  • Ly, C., & Tranchina, D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Computation, 19, 2032–2092.

    Article  PubMed  Google Scholar 

  • Nesse, W.H., Borisyuk, A., & Bressloff, P. (2008). Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation. Journal of Computational Neuroscience, 25, 317–333.

    Article  PubMed  Google Scholar 

  • Nicola, W., & Campbell, S.A. (2013a). Bifurcations of large networks of two-dimensional integrate and fire neurons. Journal of Computational Neuroscience, 35(1), 87–108. doi:10.1007/s10827-013-0442-z.

  • Nicola, W., & Campbell, S.A. (2013b). Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons. Frontiers in Computational Neuroscience, 7, 184. doi:10.3389/fncom.2013.00184.

  • Nicola, W., Ly, C., & Campbell, S.A. (2014). One-dimensional population density approaches to recurrently coupled networks of neurons with noise. arXiv:1408.4767.

  • Skinner, F.K. (2012). Cellular-based modeling of oscillatory dynamics in brain networks. Current opinion in neurobiology, 22(4), 660–669. doi:10.1016/j.conb.2012.02.001.

    Article  CAS  PubMed  Google Scholar 

  • Skinner, F.K., & Ferguson, K.A. (2013). Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23 (4), 046108. doi:10.1063/1.4829620.

    Article  CAS  Google Scholar 

  • Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. The Journal of Physiology, 482(Pt 2), 325–352.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabak, J., Senn, W., O’Donovan, M.J., & Rinzel, J. (2000). Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. The Journal of Neuroscience, 20(8), 3041–3056.

    CAS  PubMed  Google Scholar 

  • Tóth, K. (2010) In Cutsuridis, V, Graham, B., Cobb, S., & Vida, I. (Eds.), Glutamatergic neurotransmission in the hippocampus, (pp. 99–128). New York: Springer.

  • Touboul, J. (2008). Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM Journal on Applied Mathematics, 68(4), 1045–1079.

    Article  Google Scholar 

  • Vladimirski, B., Tabak, J., O’Donovan, M., & Rinzel, J. (2008). Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field. Journal of Computational Neuroscience, 25, 39–63.

    Article  PubMed  Google Scholar 

  • van Vreeswijk, C., & Hansel, D. (2001). Patterns of synchrony in neural networks with spike adaptation. Neural Computation, 13(5), 959–992.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Asl, M.N., Gillis, J., Skinner, F.K., & Zhang, L. (2005). An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. Journal of Neurophysiology, 94(1), 741–753. doi:10.1152/jn.00086.2005.

    Article  PubMed  Google Scholar 

  • Yoder, N. (2014). Peak Finder: Noise tolerant fast peak finding algorithm. http://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder.

Download references

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. K. Skinner or S. A. Campbell.

Additional information

Action Editor: David Terman

This work was supported by NSERC Canada.

K. A. Ferguson, F. Njap and W. Nicola are Shared First Authors

F. K. Skinner and S. A. Campbell are Shared Senior Authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

(JPG 89.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, K.A., Njap, F., Nicola, W. et al. Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus. J Comput Neurosci 39, 289–309 (2015). https://doi.org/10.1007/s10827-015-0577-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0577-1

Keywords

Navigation