Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Precise force-field-based calculations of octanol-water partition coefficients for the SAMPL7 molecules

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We predicted water-octanol partition coefficients for the molecules in the SAMPL7 challenge with explicit solvent classical molecular dynamics (MD) simulations. Water hydration free energies and octanol solvation free energies were calculated with a windowed alchemical free energy approach. Three commonly used force fields (AMBER GAFF, CHARMM CGenFF, OPLS-AA) were tested. Special emphasis was placed on converging all simulations, using a criterion developed for the SAMPL6 challenge. In aggregate, over 1000 \(\mu\)s of simulations were performed, with some free energy windows remaining not fully converged even after 1 \(\mu\)s of simulation time. Nevertheless, the amount of sampling produced \(\log P_{ow}\) estimates with a precision of 0.1 log units or better for converged simulations. Despite being probably as fully sampled as can expected and is feasible, the agreement with experiment remained modest for all force fields, with no force field performing better than 1.6 in root mean squared error. Overall, our results indicate that a large amount of sampling is necessary to produce precise \(\log P_{ow}\) predictions for the SAMPL7 compounds and that high precision does not necessarily lead to high accuracy. Thus, fundamental problems remain to be solved for physics-based \(\log P_{ow}\) predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119(11):5740–5761. https://doi.org/10.1063/1.1587119

    Article  CAS  Google Scholar 

  2. Bergazin TD, Tielker N, Zhang Y, Mao J, Gunner MR, Francisco K, Ballatore C, Kast SM, Mobley DL (2021) Evaluation of logP, pKa, and logD predictions from the SAMPL7 blind challenge. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-021-00397-3

  3. Beckstein O, Iorga BI (2012) Prediction of hydration free energies for aliphatic and aromatic chloro derivatives using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 26(5):635–645. https://doi.org/10.1007/s10822-011-9527-9

    Article  CAS  PubMed  Google Scholar 

  4. Beckstein O, Fourrier A, Iorga BI (2014) Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 28(3):265–276. https://doi.org/10.1007/s10822-014-9727-1

    Article  CAS  PubMed  Google Scholar 

  5. Kenney IM, Beckstein O, Iorga BI (2016) Prediction of cyclohexane-water distribution coefficients for the SAMPL5 data set using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 30(11):1045–1058. https://doi.org/10.1007/s10822-016-9949-5

    Article  CAS  PubMed  Google Scholar 

  6. Fan S, Iorga BI, Beckstein O (2020) Prediction of octanol-water partition coefficients for the SAMPL6-\(\log P\) molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields. J Comput-Aided Mol Des 34:543–560. https://doi.org/10.1007/s10822-019-00267-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaminski G, Duffy E, Matsui T, Jorgensen WL (1994) Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 98(49):13,077–13,082. https://doi.org/10.1021/j100100a043

    Article  CAS  Google Scholar 

  8. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11,225-11,236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  9. Damm W, Frontera A, Tirado-Rives J, Jorgensen W (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18(16):1955–1970. https://doi.org/10.1002/(SICI)1096-987X(199712)18:16<3c1955::AID-JCC1>3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  10. Jorgensen WL, McDonald NA (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J Mol Struct Theochem 424(1–2):145–155. https://doi.org/10.1016/S0166-1280(97)00237-6

    Article  CAS  Google Scholar 

  11. McDonald NA, Jorgensen WL (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J Phys Chem B 102(41):8049–8059. https://doi.org/10.1021/jp981200o

    Article  CAS  Google Scholar 

  12. Rizzo RC, Jorgensen WL (1999) OPLS all-atom model for amines: resolution of the amine hydration problem. J Am Chem Soc 121(20):4827–4836. https://doi.org/10.1021/ja984106u

    Article  CAS  Google Scholar 

  13. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487. https://doi.org/10.1021/jp003919d

    Article  CAS  Google Scholar 

  14. Ihlenfeldt W, Takahashi Y, Abe H, Sasaki S (1994) Computation and management of chemical properties in CACTVS: an extensible networked approach toward modularity and compatibility. J Chem Inf Comput Sci 34(1):109–116

    Article  CAS  Google Scholar 

  15. Dodda LS, Cabeza de Vaca I, Tirado-Rives J, Jorgensen WL (2017) LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res 45(W1):W331–W336. https://doi.org/10.1093/nar/gkx312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–90. https://doi.org/10.1002/jcc.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168. https://doi.org/10.1021/ci3003649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vanommeslaeghe K, MacKerell AD (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154. https://doi.org/10.1021/ci300363c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  20. Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  22. MacKerell AD, Wiorkiewicz-Kuczera J, Karplus M (1995) An all-atom empirical energy function for the simulation of nucleic acids. J Am Chem Soc 117(48):11,946–11,975. https://doi.org/10.1021/ja00153a017

    Article  CAS  Google Scholar 

  23. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  24. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124,105. https://doi.org/10.1063/1.2978177

    Article  CAS  Google Scholar 

  25. Dotson D, Beckstein O, Wille D, Kenney I, Lee H, Lim V, Barhaghi MS (2019) Alchemistry/Alchemlyb: 0.3.0. Software, https://doi.org/10.5281/zenodo.3361016

  26. Mobley DL, Dumont E, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111(9):2242–2254. https://doi.org/10.1021/jp0667442

    Article  CAS  PubMed  Google Scholar 

  27. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  28. Essman U, Perela L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592. https://doi.org/10.1063/1.470117

    Article  Google Scholar 

  29. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122. https://doi.org/10.1021/ct700200b

    Article  CAS  PubMed  Google Scholar 

  30. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  31. Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 2-3, 2014, Revised Selected Papers, Lecture Notes in Computer Science, vol 8759, Springer, Switzerland, pp 3–27, https://doi.org/10.1007/978-3-319-15976-8_1

  32. Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29(5):397–411. https://doi.org/10.1007/s10822-015-9840-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chodera JD (2016) A simple method for automated equilibration detection in molecular simulations. J Chem Theory Comput 12(4):1799–1805. https://doi.org/10.1021/acs.jctc.5b00784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faber NKM (1999) Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration. Chemom Intell Lab Syst 49(1):79–89. https://doi.org/10.1016/S0169-7439(99)00027-1

    Article  CAS  Google Scholar 

  35. Yang W, Bitetti-Putzer R, Karplus M (2004) Free energy simulations: use of reverse cumulative averaging to determine the equilibrated region and the time required for convergence. J Chem Phys 120(6):2618–2628. https://doi.org/10.1063/1.1638996

    Article  CAS  PubMed  Google Scholar 

  36. Rumsfeld DH (2011) Known and unknown: a memoir. Penguin Group, New York

    Google Scholar 

  37. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100(020):603. https://doi.org/10.1103/PhysRevLett.100.020603

    Article  CAS  Google Scholar 

  38. Sugita Y, Okamoto Y (2000) Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem Phys Lett 329(3–4):261–270. https://doi.org/10.1016/S0009-2614(00)00999-4

    Article  CAS  Google Scholar 

  39. Swope WC, Horn HW, Rice JE (2010) Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration. J Phys Chem B 114(26):8631–8645. https://doi.org/10.1021/jp911701h

    Article  CAS  PubMed  Google Scholar 

  40. Lundborg M, Lindahl E (2015) Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations. J Phys Chem B 119(3):810–823. https://doi.org/10.1021/jp505332p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for pointing out potential problems with gas phase sampling in our simulations. We appreciate the National Institutes of Health for its support of the SAMPL project via R01GM124270 to David L. Mobley (UC Irvine).

Funding

Research reported in this publication was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under Awards Number R01GM118772 and R01GM125081, by GENCI–IDRIS (Grant 2020-A0080711524), by the French National Research Agency (ANR) through grants ANR-10-LABX-33 (LabEx LERMIT) and ANR-14-JAMR-0002-03 (JPIAMR), and by the Région Ile-de-France (grant DIM MAL-INF). Computing time on the Agave cluster of Research Computing at Arizona State University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bogdan I. Iorga or Oliver Beckstein.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (PDF 5336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Nedev, H., Vijayan, R. et al. Precise force-field-based calculations of octanol-water partition coefficients for the SAMPL7 molecules. J Comput Aided Mol Des 35, 853–870 (2021). https://doi.org/10.1007/s10822-021-00407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00407-4

Keywords

Navigation