Abstract
During the last decades many metaheuristics for global numerical optimization have been proposed. Among them, Basin Hopping is very simple and straightforward to implement, although rarely used outside its original Physical Chemistry community. In this work, our aim is to compare Basin Hopping, and two population variants of it, with readily available implementations of the well known metaheuristics Differential Evolution, Particle Swarm Optimization, and Covariance Matrix Adaptation Evolution Strategy. We perform numerical experiments using the IOH profiler environment with the BBOB test function set and two difficult real-world problems. The experiments were carried out in two different but complementary ways: by measuring the performance under a fixed budget of function evaluations and by considering a fixed target value. The general conclusion is that Basin Hopping and its newly introduced population variant are almost as good as Covariance Matrix Adaptation on the synthetic benchmark functions and better than it on the two hard cluster energy minimization problems. Thus, the proposed analyses show that Basin Hopping can be considered a good candidate for global numerical optimization problems along with the more established metaheuristics, especially if one wants to obtain quick and reliable results on an unknown problem.
Similar content being viewed by others
Data availibility
The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.
References
Audet, C., Hare, W.: Derivative-free and Blackbox Optimization. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68913-5
Bäck, T., Foussette, C., Krause, P.: Contemporary Evolution strategies. Springer, Berlin, Heidelberg (2013)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983). https://doi.org/10.1126/science.220.4598.671
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968 . IEEE
Liberti, L.: Introduction to global optimization. Ecole Polytechnique, France (2008)
Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. Society for Industrial and Applied Mathematics, Philadelphia, USA (2013)
Kochenderfer, M.J., Wheeler, T.A.: Algorithms for Optimization. MIT Press, Cambridge, Massachusetts (2019)
Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 8(1), 1–9 (2018). https://doi.org/10.1038/s41598-017-18940-4
Pham, D.T., Castellani, M.: Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms. Soft. Comput. 18(5), 871–903 (2014). https://doi.org/10.1007/s00500-013-1104-9
Wales, D.J., Doye, J.P.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997). https://doi.org/10.1021/jp970984n
Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals, and biomolecules. Science 285(5432), 1368–1372 (1999). https://doi.org/10.1126/science.285.5432.1368
Doye, J.P., Leary, R.H., Locatelli, M., Schoen, F.: Global optimization of Morse clusters by potential energy transformations. INFORMS J. Comput. 16(4), 371–379 (2004). https://doi.org/10.1287/ijoc.1040.0084
Kucharik, M., Hofacker, I.L., Stadler, P.F., Qin, J.: Basin hopping graph: a computational framework to characterize RNA folding landscapes. Bioinformatics 30(14), 2009–2017 (2014). https://doi.org/10.1093/bioinformatics/btu156
Zhou, C., Ieritano, C., Hopkins, W.S.: Augmenting basin-hopping with techniques from unsupervised machine learning: Applications in spectroscopy and ion mobility. Front. Chem. 7, 519 (2019). https://doi.org/10.3389/fchem.2019.00519
Banerjee, A., Jasrasaria, D., Niblett, S.P., Wales, D.J.: Crystal structure prediction for benzene using basin-hopping global optimization. J. Phys. Chem. A 125(17), 3776–3784 (2021). https://doi.org/10.1021/acs.jpca.1c00903
Baioletti, M., Milani, A., Santucci, V., Tomassini, M.: Comparing basin hopping with differential evolution and particle swarm optimization. In: International Conference on the Applications of Evolutionary Computation (Part of EvoStar), pp. 46–60 (2022). https://doi.org/10.1007/978-3-031-02462-7_4 . Springer
Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. PhD thesis, INRIA (2009)
Doerr, C., Wang, H., Ye, F., Rijn, S., Bäck, T.: IOHprofiler: A benchmarking and profiling tool for iterative optimization heuristics. arXiv preprint arXiv:1810.05281 (2018) https://doi.org/10.48550/arXiv.1810.05281
Baudis, P.: COCOpf: An algorithm portfolio framework. arXiv preprint arXiv:1405.3487 (2014) https://doi.org/10.48550/arXiv.1405.3487
Grosso, A., Locatelli, M., Schoen, F.: An experimental analysis of a population based approach for global optimization. Comput. Optim. Appl. 38(3), 351–370 (2007). https://doi.org/10.1007/s10589-007-9026-z
Grosso, A., Locatelli, M., Schoen, F.: A population-based approach for hard global optimization problems based on dissimilarity measures. Math. Program. 110(2), 373–404 (2007). https://doi.org/10.1007/s10107-006-0006-3
Leary, R.H.: Global optimization on funneling landscapes. J. Global Optim. 18(4), 367–383 (2000). https://doi.org/10.1023/A:1026500301312
Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989). https://doi.org/10.1007/BF01589116
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308
Powell, M.J.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964). https://doi.org/10.1093/comjnl/7.2.155
Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: Framework and applications. In: Handbook of Metaheuristics, pp. 129–168. Springer, Boston, MA (2019). https://doi.org/10.1007/978-3-319-91086-4_5
Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996). https://doi.org/10.1109/ICEC.1996.542381 . IEEE
Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. GitHub, Califirnia (2018)
...Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ, Feng, Y., Moore, E.W., Vander Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P.: SciPy 1.0 contributors: SciPy 10: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2
Faure, H., Pillichshammer, F., Pirsic, G., Schmid, W.C.: L2 discrepancy of generalized two-dimensional hammersley point sets scrambled with arbitrary permutations. Acta Arith 4(141), 395–418 (2010). https://doi.org/10.4064/aa141-4-6
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893
Alabert, A., Berti, A., Caballero, R., Ferrante, M.: No-free-lunch theorems in the continuum. Theoret. Comput. Sci. 600, 98–106 (2015). https://doi.org/10.1016/j.tcs.2015.07.029
Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 1(1), 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002
Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods vol. 751. John Wiley & Sons, Ltd, Hoboken, New Jersey, USA (2013). https://doi.org/10.1002/9781119196037
Wang, H., Vermetten, D., Ye, F., Doerr, C., Bäck, T.: IOHanalyzer: detailed performance analyses for iterative optimization heuristics. ACM Trans. Evolut. Learn. Optim. 2(1), 1–29 (2022). https://doi.org/10.1145/3510426
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006). https://doi.org/10.5555/1248547.1248548
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1
Das, S., N.Suganthan, P.: Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata, 341–359 (2010)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no financial or proprietary interests in any material discussed in this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Baioletti, M., Santucci, V. & Tomassini, M. A performance analysis of Basin hopping compared to established metaheuristics for global optimization. J Glob Optim 89, 803–832 (2024). https://doi.org/10.1007/s10898-024-01373-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-024-01373-5