Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Tight bounds on the maximal perimeter and the maximal width of convex small polygons

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with \(n=2^s\) vertices are not known when \(s \ge 4\). In this paper, we construct a family of convex small n-gons, \(n=2^s\) and \(s\ge 3\), and show that the perimeters and the widths obtained cannot be improved for large n by more than \(a/n^6\) and \(b/n^4\) respectively, for certain positive constants a and b. In addition, assuming that a conjecture of Mossinghoff is true, we formulate the maximal perimeter problem as a nonlinear optimization problem involving trigonometric functions and, for \(n=2^s\) with \(3 \le s\le 7\), we provide global optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter. J. Comb. Theory Ser. A 114(1), 135–150 (2007)

    Article  MathSciNet  Google Scholar 

  2. Audet, C., Hansen, P., Messine, F.: Isoperimetric polygons of maximum width. Discret. Comput. Geom. 41(1), 45–60 (2009)

    Article  MathSciNet  Google Scholar 

  3. Audet, C., Hansen, P., Messine, F.: Ranking small regular polygons by area and by perimeter. J. Appl. Ind. Math. 3(1), 21–27 (2009)

    Article  MathSciNet  Google Scholar 

  4. Audet, C., Hansen, P., Messine, F., Ninin, J.: The small octagons of maximal width. Discret. Comput. Geom. 49(3), 589–600 (2013)

    Article  MathSciNet  Google Scholar 

  5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bezdek, A., Fodor, F.: On convex polygons of maximal width. Arch. Math. 74(1), 75–80 (2000)

    Article  MathSciNet  Google Scholar 

  7. Bingane, C.: Largest small polygons: a sequential convex optimization approach. Optim. Lett. (2022). https://doi.org/10.1007/s11590-022-01887-5

  8. Bingane, C.: OPTIGON: extremal small polygons. https://github.com/cbingane/optigon (2020)

  9. Datta, B.: A discrete isoperimetric problem. Geometriae Dedicata 64(1), 55–68 (1997)

    Article  MathSciNet  Google Scholar 

  10. Hare, K.G., Mossinghoff, M.J.: Sporadic Reinhardt polygons. Discret. Comput. Geom. 49(3), 540–557 (2013)

    Article  MathSciNet  Google Scholar 

  11. Hare, K.G., Mossinghoff, M.J.: Most Reinhardt polygons are sporadic. Geometriae Dedicata 198(1), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  12. Mossinghoff, M.J.: Isodiametric problems for polygons. Discret. Comput. Geom. 36(2), 363–379 (2006)

    Article  MathSciNet  Google Scholar 

  13. Mossinghoff, M.J.: An isodiametric problem for equilateral polygons. Contemp. Math. 457, 237–252 (2008)

    Article  MathSciNet  Google Scholar 

  14. Mossinghoff, M.J.: Enumerating isodiametric and isoperimetric polygons. J. Comb. Theory Ser. A 118(6), 1801–1815 (2011)

    Article  MathSciNet  Google Scholar 

  15. Reinhardt, K.: Extremale polygone gegebenen durchmessers. Jahresbericht der Deutschen Mathematiker-Vereinigung 31, 251–270 (1922)

    Google Scholar 

  16. Tamvakis, N.K.: On the perimeter and the area of the convex polygon of a given diameter. Bull. Greek Math. Soc. 28, 115–132 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Charles Audet, Professor at Polytechnique Montreal, for helpful discussions on extremal small polygons and helpful comments on early drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bingane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingane, C. Tight bounds on the maximal perimeter and the maximal width of convex small polygons. J Glob Optim 84, 1033–1051 (2022). https://doi.org/10.1007/s10898-022-01181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01181-9

Keywords

Mathematics Subject Classification

Navigation