Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective function. While its single criteria analogon is analytically solvable, MUCO shares the computational complexity issues of most multi-objective combinatorial optimization problems: intractability and NP-hardness of the \(\varepsilon \)-constraint scalarizations. In this article interrelations between the supported points of a MUCO problem, arrangements of hyperplanes and a weight space decomposition, and zonotopes are presented. Based on these interrelations and a result by Zaslavsky on the number of faces in an arrangement of hyperplanes, a polynomial bound on the number of extreme supported solutions can be derived, leading to an exact polynomial time algorithm to find all extreme supported solutions. It is shown how this algorithm can be incorporated into a solution approach for multi-objective knapsack problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aissi, H., Mahjoub, A.R., McCormick, S.T., Queyranne, M.: Strongly polynomial bounds for multiobjective and parametric global minimum cuts in graphs and hypergraphs. Math. Program. 154(1), 3–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson, H.P., Sun, E.: Outcome space partition of the weight set in multiobjective linear programming. J. Optim. Theory Appl. 105(1), 17–36 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, H.P., Sun, E.: A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program. Eur. J. Oper. Res. 139, 26–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C–28(9), 643–647 (1979)

    Article  MATH  Google Scholar 

  6. Bökler, F., Mutzel, P.: Output-sensitive algorithms for enumerating the extreme nondominated points of multiobjective combinatorial optimization problems. In: Bansal, N., Finocchi, I. (eds.) Algorithms–ESA 2015: 23rd Annual European Symposium, Patras, Greece, September 14–16, 2015, Proceedings, pp. 288–299. Springer, Berlin (2015)

    Chapter  Google Scholar 

  7. Bökler, F., Ehrgott, M., Morris, C., Mutzel, P.: Output-sensitive complexity of multiobjective combinatorial optimization. J. Multicrit. Decis. Anal. 24(1–2), 25–36 (2017)

    Article  Google Scholar 

  8. Buck, R.: Partition of space. Am. Math. Mon. 50(9), 541–544 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  10. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum 22, 425–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming. J. Global Optim. 52, 757–778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferrez, J.A., Fukuda, K., Liebling, T.M.: Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. Eur. J. Oper. Res. 166, 35–50 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figueira, J.R., Fonseca, C.M., Halffmann, P., Klamroth, K., Paquete, L., Ruzika, S., Schulze, B., Stiglmayr, M., Willems, D.: Easy to say they are hard, but hard to see they are easy: towards a categorization of tractable multiobjective combinatorial optimization problems. J. Multi-Crit. Decis. Anal. 24, 82–98 (2017)

    Article  Google Scholar 

  15. Gaas, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval Res. Logist. Q. 2, 39–45 (1955)

    Article  MathSciNet  Google Scholar 

  16. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optim. 19(2), 836–845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lacour, R., Klamroth, K., Fonseca, C.M.: A box decomposition algorithm to compute the hypervolume indicator. (2015). CoRR arXiv:1510.01963

  20. Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Manag. Sci. 56(12), 2302–2315 (2010)

    Article  MATH  Google Scholar 

  21. Pisinger, D.: A minimal algorithm for the \(0\)\(1\) knapsack problem. Oper. Res. 46(5), 758–767 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pisinger, D.: Minknap algorithm (2015). http://www.diku.dk/~pisinger/codes.html

  23. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22(3), 371–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Przybylski, A., Klamroth, K., Lacour, R.: A simple and efficient dichotomic search algorithm for multi-objective integer linear programmes, submitted manuscript (2017)

  25. Schulze, B.: New perspectives on multi-objective knapsack problems. Ph.D. Thesis, Shaker Verlag, Aachen (2017)

  26. Schulze, B., Paquete, L., Klamroth, K., Figueira, J.R.: Bi-dimensional knapsack problems with one soft constraint. Comput. Oper. Res. 78, 15–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Seipp, F.: On Adjacency, Cardinality, and Partial Dominance in Discrete Multiple Objective Optimization. Dr. Hut Verlag, München (2013)

    Google Scholar 

  28. Gomes da Silva, C., Clímaco, G., Figueira, J.R.: Geometrical configuration of the Pareto frontier of bi-criteria \(\{0,1\}\)-knapsack problems. Research Report 16-2004, INESC-Coimbra, Portugal (2004)

  29. Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L.: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem. J. Global Optim. 12, 139–155 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wolsey, L.A.: Integer Programming. Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (1998)

    Google Scholar 

  31. Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. 154, 1–95 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms: a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature—PPSN V, pp. 292–301. Springer, Berlin (1998)

    Chapter  Google Scholar 

  33. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the bilateral cooperation project Multiobjective Combinatorial Optimization: Beyond the Biobjective Case funded by the Deutscher Akademischer Austausch Dienst (DAAD, Project-ID 57212018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Schulze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, B., Klamroth, K. & Stiglmayr, M. Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions. J Glob Optim 74, 495–522 (2019). https://doi.org/10.1007/s10898-019-00745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00745-6

Keywords

Navigation