Abstract
We introduce a new, integrated approach to uncalibrated photometric stereo. We perform 3D reconstruction of Lambertian objects using multiple images produced by unknown, directional light sources. We show how to formulate a single optimization that includes rank and integrability constraints, allowing also for missing data. We then solve this optimization using the Alternating Direction Method of Multipliers (ADMM). We conduct extensive experimental evaluation on real and synthetic data sets. Our integrated approach is particularly valuable when performing photometric stereo using as few as 4–6 images, since the integrability constraint is capable of improving estimation of the linear subspace of possible solutions. We show good improvements over prior work in these cases.
Similar content being viewed by others
References
Ackermann, J., Goesele, M.: A survey of photometric stereo techniques. Found. Trends Comput. Graph. Vis. 9(3–4), 149–254 (2015)
Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the generalized bas-relief ambiguity by entropy minimization. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, IEEE, pp. 1–7 (2007)
Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. Int. J. Comput. Vis. 72(3), 239–257 (2007)
Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vis. 35(1), 33–44 (1999)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Cabral, R.S., Torre, F., Costeira, J.P., Bernardino, A.: Matrix completion for multi-label image classification. In: Advances in Neural Information Processing Systems, pp. 190–198 (2011)
Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)
Chandraker, M., Agarwal, S., Kriegman, D.: Shadowcuts: Photometric stereo with shadows. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, pp. 1–8 (2007)
Chandraker, M.K., Kahl, C.F., Kriegman, D.J.: Reflections on the generalized bas-relief ambiguity. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, IEEE, vol. 1, pp. 788–795 (2005)
Drbohlav, O., Chaniler, M.: Can two specular pixels calibrate photometric stereo? In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, IEEE, vol. 2, pp. 1850–1857 (2005)
Favaro, P., Papadhimitri, T.: A closed-form solution to uncalibrated photometric stereo via diffuse maxima. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 821–828 (2012)
Georghiades, A.S.: Incorporating the torrance and sparrow model of reflectance in uncalibrated photometric stereo. In: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, IEEE, pp. 816–823 (2003)
Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)
Hayakawa, H.: Photometric stereo under a light source with arbitrary motion. JOSA A 11(11), 3079–3089 (1994)
Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)
Joshi, N., Kemelmacher, I., Simon, I.: Photometric stereo dataset. http://courses.cs.washington.edu/courses/cse455/10wi/projects/project4/ (2015)
Mecca, R., Tankus, A., Wetzler, A., Bruckstein, A.M.: A direct differential approach to photometric stereo with perspective viewing. SIAM J. Imaging Sci. 7(2), 579–612 (2014)
Oh, T.H., Kim, H., Tai, Y.W., Bazin, J.C., Kweon, I.S.: Partial sum minimization of singular values in RPCA for low-level vision. In: 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, pp. 145–152 (2013)
Oh, T.H., Tai, Y.W., Bazin, J.C., Kim, H., Kweon, I.S.: Partial sum minimization of singular values in robust PCA: algorithm and applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 744–758 (2016)
Okabe, T., Sato, I., Sato, Y.: Attached shadow coding: estimating surface normals from shadows under unknown reflectance and lighting conditions. In: 2009 IEEE 12th International Conference on Computer Vision, IEEE, pp. 1693–1700 (2009)
Okatani, T., Yoshida, T., Deguchi, K.: Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms. In: 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, pp. 842–849 (2011)
Papadhimitri, T., Favaro, P.: A new perspective on uncalibrated photometric stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1474–1481 (2013)
Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)
Quéau, Y., Lauze, F., Durou, J.D.: Solving uncalibrated photometric stereo using total variation. J. Math. Imaging Vis. 52(1), 87–107 (2015)
Shi, B., Matsushita, Y., Wei, Y., Xu, C., Tan, P.: Self-calibrating photometric stereo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 1118–1125 (2010)
Shi, B., Wu, Z., Mo, Z., Duan, D., Yeung, S.K., Tan, P.: A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3707–3716 (2016)
Sunkavalli, K., Zickler, T., Pfister, H.: Visibility subspaces: uncalibrated photometric stereo with shadows. In: European Conference on Computer Vision, Springer, pp. 251–264 (2010)
Tan, P.: Phong reflectance model. In: Computer Vision, Springer, pp. 592–594 (2014)
Tan, .P, Mallick, S.P., Quan, L., Kriegman, D.J., Zickler, T.: Isotropy, reciprocity and the generalized bas-relief ambiguity. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, IEEE, pp. 1–8 (2007)
Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 191 (1980)
Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust photometric stereo via low-rank matrix completion and recovery. In: Computer Vision–ACCV 2010, Springer, pp. 703–717 (2011)
Xiong, Y., Chakrabarti, A., Basri, R., Gortler, S.J., Jacobs, D.W., Zickler, T.: From shading to local shape. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 67–79 (2015)
Yuille, A., Snow, D.: Shape and albedo from multiple images using integrability. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997. IEEE, pp. 158–164 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sengupta, S., Zhou, H., Forkel, W. et al. Solving Uncalibrated Photometric Stereo Using Fewer Images by Jointly Optimizing Low-rank Matrix Completion and Integrability. J Math Imaging Vis 60, 563–575 (2018). https://doi.org/10.1007/s10851-017-0772-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0772-y