Abstract
We show that the construction of a digital sphere by circularly sweeping a digital semi-circle (generatrix) around its diameter results in the appearance of some holes (absentee-voxels) in its spherical surface of revolution. This incompleteness calls for a proper characterization of the absentee-voxels whose restoration in the surface of revolution can ensure the required completeness. In this paper, we present a characterization of the absentee-voxels using certain techniques of digital geometry and show that their count varies quadratically with the radius of the semi-circular generatrix. Next, we design an algorithm to fill up the absentee-voxels so as to generate a spherical surface of revolution, which is complete and realistic from the viewpoint of visual perception. We also show how the proposed technique for absentee-filling can be used to generate a variety of digital surfaces of revolution by choosing an arbitrary curve as the generatrix. We further show that covering a solid sphere by a set of complete spheres also results to an asymptotically larger count of absentees, which is cubic in the radius of the sphere. A complete characterization of the absentee-voxels that aids the subsequent generation of a solid digital sphere is also presented. Test results have been furnished to substantiate our theoretical findings.
Similar content being viewed by others
Notes
Absentee-voxels are also referred to as ‘tunnels’, since they connect the interior and the exterior of an otherwise closed digital surface [16].
References
Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)
Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Visual. Comput. Graph. 3(1), 75–86 (1997)
Andres, E., Roussillon, T.: Analytical description of digital circles. In: Proceedings of the Discrete Geometry for Computer Imagery—16th IAPR International Conference, (DGCI’11), LNCS, vol. 6607, pp. 235–246 (2011)
Bastl, B., Kosinka, J., Lávicka, M.: Simple and branched skins of systems of circles and convex shapes. Graph. Models 78, 1–9 (2015)
Bera, S., Bhowmick, P., Bhattacharya, B.B.: A digital-geometric algorithm for generating a complete spherical surface in \({\mathbb{Z}}^{3}\). In: Proceedings of the International Conference on Applied Algorithms (ICAA’14), LNCS, vol. 8321, pp. 49–61 (2014)
Bera, S., Bhowmick, P., Stelldinger, P., Bhattacharya, B.B.: On covering a digital disc with concentric circles in \({{\mathbb{Z}}^2}\). Theor. Comput. Sci. 506, 1–16 (2013)
Bhowmick, P., Bhattacharya, B.B.: Number theoretic interpretation and construction of a digital circle. Discret. Appl. Math. 156(12), 2381–2399 (2008)
Biswas, R., Bhowmick, P.: On finding spherical geodesic paths and circles in \({\mathbb{Z}}^{3}\). In: Proceedings of the Discrete Geometry for Computer Imagery, LNCS, vol. 8668, pp. 396–409. Springer (2014)
Biswas, R., Bhowmick, P.: Layer the sphere—for accurate and additive voxelation by integer operation. Visual Comput. 31(6–8), 787–797 (2015)
Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic paths and circles in \({\mathbb{Z}}^3\). Theor. Comput. Sci. 605, 146–163 (2015)
Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through primitive integer operations. Theor. Comput. Sci. doi:10.1016/j.tcs.2015.11.018
Biswas, R., Bhowmick, P., Brimkov, V.E.: On the connectivity and smoothness of discrete spherical circles. In: Combinatorial Image Analysis—17th International Workshop, IWCIA, LNCS, vol. 9448, pp. 86–100 (2015)
Biswas, R., Bhowmick, P., Brimkov, V.E.: On the polyhedra of graceful spheres and circular geodesics. Discret. Appl. Math. doi:10.1016/j.dam.2015.11.017
Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci. 283(1), 151–170 (2002)
Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theor. Comput. Sci. 406(1–2), 24–30 (2008)
Brimkov, V.E., Barneva, R.P., Brimkov, B.: Connected distance-based rasterization of objects in arbitrary dimension. Graph. Models 73, 323–334 (2011)
Brimkov, V.E., Barneva, R.P., Brimkov, B., Vieilleville, F.: Offsetapproach to defining 3d digital lines. In: Proceedings of the 4th International Symposium on Advances in Visual Computing, ISVC ’08, pp. 678–687. Springer, Heidelberg (2008)
Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discret. Appl. Math. 155(4), 468–495 (2007)
Chamizo, F.: Lattice points in bodies of revolution. Acta Arith. 85(3), 265–277 (1998)
Chamizo, F., Cristobal, E.: The sphere problem and the \(L\)-functions. Acta Math. Hung. 135(1–2), 97–115 (2012)
Chamizo, F., Cristóbal, E., Ubis, A.: Visible lattice points in the sphere. J. Number Theor. 126(2), 200–211 (2007)
Chamizo, F., Cristóbal, E., Ubis, A.: Lattice points in rational ellipsoids. J. Math. Anal. Appl. 350(1), 283–289 (2009)
Chan, Y.T., Thomas, S.M.: Cramer-Rao lower bounds for estimation of a circular arc center and its radius. Graph. Models Image Process. 57(6), 527–532 (1995)
Cheng, H.L., Shi, X.: Quality mesh generation for molecular skin surfaces using restricted union of balls. Comput. Geom. 42(3), 196–206 (2009)
Christ, T., Pálvölgyi, D., Stojakovic, M.: Consistent digital line segments. Discret. Comput. Geom. 47(4), 691–710 (2012)
Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays. Discret. Comput. Geom. 42(3), 359–378 (2009)
Cochran, J.K.: Ceramic hollow spheres and their applications. Curr. Opin. Solid State Mater. Sci. 3(5), 474–479 (1998)
Davies, E.R.: A hybrid sequential-parallel approach to accurate circle centre location. Pattern Recognit. Lett. 7, 279–290 (1988)
Doros, M.: On some properties of the generation of discrete circular arcs on a square grid. Comput. Vision Graph. Image Process. 28(3), 377–383 (1984)
Draine, B., Flatau, P.: Discrete dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994)
Ewell, J.A.: Counting lattice points on spheres. Math. Intell. 22(4), 51–53 (2000)
Feschet, F., Reveillès, J.P.: A generic approach forn-dimensional digital lines. In: Proceedings of the 13th International Conference on Discrete Geometry for Computer Imagery, DGCI’06, pp. 29–40. Springer, Heidelberg (2006)
Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Longin Jean Latecki, A.Y.W., David M. Mount (eds.) Vision Geometry XIV, Electronic Imaging, SPIE, vol. 6066, p. 60660C. San Jose, USA (2006)
Fiorio, C., Toutant, J.L.: Arithmetic discrete hyperspheres andseparatingness. In: Proceedings of the 13th international conference on Discrete Geometry for Computer Imagery, DGCI’06, pp. 425–436. Springer, Heidelberg (2006)
Foley, J.D., Dam, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics—Principles and Practice. Addison-Wesley, Reading (1993)
Fomenko, O.: Distribution of lattice points over the four-dimensional sphere. J. Math. Sci. 110(6), 3164–3170 (2002)
Fukshansky, L., Henshaw, G., Liao, P., Prince, M., Sun, X., Whitehead, S.: On integral well-rounded lattices in the plane. Discrete & Computational Geometry 48(3), 735–748 (2012)
Ghahramani, M., Garibov, A., Agayev, T.: Production and quality control of radioactive yttrium microspheres for medical applications. Appl. Radiat. Isot. 85, 87–91 (2014)
Guo, L., Dong, X., Cui, X., Cui, F., Shi, J.: Morphology and dispersivity modulation of hollow microporous spheres synthesized by a hard template route. Mater. Lett. 63(1314), 1141–1143 (2009)
Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. 4, 394–396 (1974)
Heath-Brown, D.R.: Lattice Points in the Sphere. Number Theory in Progress. Walter de Gruyter, Berlin (1999)
Hiller, J., Lipson, H.: Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyp. J. 15(2), 137–149 (2009)
Honsberger, R.: Circles, squares, and lattice points. Math. Gems I, 117–127 (1973)
Kawashita, M., Shineha, R., Kim, H.M., Kokubo, T., Inoue, Y., Araki, N., Nagata, Y., Hiraoka, M., Sawada, Y.: Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials 24(17), 2955–2963 (2003)
K\(\ddot{\text{ u }}\)hleitner, M.: On lattice points in rational ellipsoids: an omega estimate for the error term. In: Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg vol. 70(1), pp. 105–111 (2000)
Kenmochi, Y., Buzer, L., Sugimoto, A., Shimizu, I.: Digital planarsurface segmentation using local geometric patterns. In: Proceedingsof the 14th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI’08, pp. 322–333. Springer, Heidelberg (2008)
Kim, O.: Rapid prototyping of electrically small spherical wire antennas. IEEE Transactions on Antennas and Propagation 62(7), 3839–3842 (2014)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (2004)
Klette, R., Rosenfeld, A.: Digital straightness: a review. Discret. Appl. Math. 139(1–3), 197–230 (2004)
Kulpa, Z.: On the properties of discrete circles, rings, and disks. Comput. Graph. Image Process. 10(4), 348–365 (1979)
Kulpa, Z., Kruse, B.: Algorithms for circular propagation in discrete images. Comput. Vision Graph. Image Process. 24(3), 305–328 (1983)
Kumar, G., Sharma, N., Bhowmick, P.: Wheel-throwing in digital space using number-theoretic approach. Int. J. Arts Technol. 4(2), 196–215 (2011)
Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)
Maehara, H.: On a sphere that passes through \(n\) lattice points. Eur. J. Combin. 31(2), 617–621 (2010)
Magyar, A.: On the distribution of lattice points on spheres and level surfaces of polynomials. J. Number Theor. 122(1), 69–83 (2007)
Mignosi, F.: On the number of factors of Sturmian words. Theor. Comput. Sci. 82(1), 71–84 (1991)
Montani, C., Scopigno, R.: Spheres-to-voxels conversion. In: Glassner, A.S. (ed.) Graphics gems, pp. 327–334. Academic Press Professional, Inc., San Diego (1990)
Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognit. Lett. 25(11), 1231–1242 (2004)
Nakamura, A., Aizawa, K.: Digital circles. Comput. Vision Graph. Image Process. 26(2), 242–255 (1984)
Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. J. Math. Imaging Vis. 42(1), 1–24 (2012)
Roget, B., Sitaraman, J.: Wall distance search algorithm using voxelized marching spheres. J. Comput. Phys. 241, 76–94 (2013)
Rossignac, J., Whited, B., Slabaugh, G., Fang, T., Unal, G.: Pearling: 3D interactive extraction of tubular structures from volumetric images. In: MICCAI Workshop on Interaction in Medical Image Analysis and Visualization (2007)
Sene, F.F., Martinelli, J.R., Okuno, E.: Synthesis and characterization of phosphate glass microspheres for radiotherapy applications. J. Non Cryst. Solids 354(4244), 4887–4893 (2008)
Stelldinger, P.: Image Digitization and its Influence on Shape Properties in Finite Dimensions. IOS Press, Amsterdam (2007)
Thomas, S.M., Chan, Y.T.: A simple approach for the estimation of circular arc center and its radius. Comput. Vision Graph. Image Process. 45(3), 362–370 (1989)
Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discret. Appl. Math. 161, 2662–2677 (2013)
Tsang, K.M.: Counting lattice points in the sphere. Bull. Lond. Math. Soc. 32, 679–688 (2000)
Wang, C., Liu, Z., Liu, L.: As-rigid-as-possible spherical parametrization. Graph. Models 76(5), 457–467 (2014)
Woo, D.M., Han, S.S., Park, D.C., Nguyen, Q.D.: Extraction of 3d line segment using digital elevation data. In: Proceedings of the2008 Congress on Image and Signal Processing, CISP’08, vol. 2, pp. 734–738. IEEE Computer Society, Washington, DC, USA (2008)
Yuen, P.C., Feng, G.C.: A novel method for parameter estimation of digital arc. Pattern Recognit. Lett. 17(9), 929–938 (1996)
Zheng, M., Cao, J., Chang, X., Wang, J., Liu, J., Ma, X.: Preparation of oxide hollow spheres by colloidal carbon spheres. Mater. Lett. 60(24), 2991–2993 (2006)
Zubko, E., Petrov, D., Grynko, Y., Shkuratov, Y., Okamoto, H., Muinonen, K., Nousiainen, T., Kimura, H., Yamamoto, T., Videen, G.: Validity criteria of the discrete dipole approximation. Appl. Opt. 49(8), 1267–1279 (2010)
Acknowledgments
The authors are thankful to the anonymous reviewers for their constructive comments and suggestions, which have helped in shaping the paper up to its merit.
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version of this work appeared in ICAA’14 [5].
Rights and permissions
About this article
Cite this article
Bera, S., Bhowmick, P. & Bhattacharya, B.B. On the Characterization of Absentee-Voxels in a Spherical Surface and Volume of Revolution in \({\mathbb Z}^3\) . J Math Imaging Vis 56, 535–553 (2016). https://doi.org/10.1007/s10851-016-0654-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-016-0654-8