Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Applications of genetic programming to finance and economics: past, present, future

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

While the origins of genetic programming (GP) stretch back over 50 years, the field of GP was invigorated by John Koza’s popularisation of the methodology in the 1990s. A particular feature of the GP literature since then has been a strong interest in the application of GP to real-world problem domains. One application domain which has attracted significant attention is that of finance and economics, with several hundred papers from this subfield being listed in the GP bibliography. In this article we outline why finance and economics has been a popular application area for GP and briefly indicate the wide span of this work. However, despite this research effort there is relatively scant evidence of the usage of GP by the mainstream finance community in academia or industry. We speculate why this may be the case, describe what is needed to make this research more relevant from a finance perspective, and suggest some future directions for the application of GP in finance and economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Of course, industry participants have a good reason to keep successful applications of new technologies secret and this could explain the relative lack of industry practitioners that discuss the use of GP and other advanced methodologies. There are a few notable exceptions, such as Sentient Technologies, which has used evolutionary and deep learning for areas such as e-commerce and trading.

  2. A more detailed discussion on the importance of the appropriate selection of fitness functions takes place in Sect. 3.5.

  3. http://www.coursera.org. Last Accessed: 26 September 2018.

  4. http://www.udacity.com. Last accessed: 26 September 2018.

  5. There are some exceptions, e.g. high-frequency trading hedgefunds, where black box models are becoming more acceptable, especially due to the good performance of algorithms such as deep learning. Nevertheless, the problem remains that there are many other areas in economics and finance that black (or grey) box models are impractical to implement.

  6. http://blogs.wsj.com/marketbeat/2010/05/11/nasdaq-heres-our-timeline-of-the-flash-crash/ Last access: 10 October 2018.

  7. Of course, the significance of the problem should have been vetted by the scientific community; it shouldn’t be left only to the authors of the paper to argue this.

  8. http://www.human-competitive.org/call-for-entries.

References

  1. A. Adegboye, M. Kampouridis, C.G. Johnson, Regression genetic programming for estimating trend end in foreign exchange market, in 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (2017)

  2. A. Agapitos, M. O’Neill, A. Brabazon, Evolutionary learning of technical trading rules without data-mining bias, in Parallel Problem Solving from Nature, PPSN XI, ed. by R. Schaefer, C. Cotta, J. Kołodziej, G. Rudolph (Springer, Berlin, 2010), pp. 294–303

    Google Scholar 

  3. A. Agapitos, M. O’Neill, A. Brabazon, Evolving seasonal forecasting models with genetic programming in the context of pricing weather-derivatives, in Applications of Evolutionary Computation, ed. by C. Di Chio (Springer, Berlin, 2012), pp. 135–144

    Google Scholar 

  4. A. Agapitos, M. O’Neill, A. Brabazon, Genetic Programming for the Induction of Seasonal Forecasts: A Study on Weather Derivatives (Springer, New York, 2012), pp. 159–188

    Google Scholar 

  5. A.K. Alexandridis, M. Kampouridis, S. Cramer, A comparison of wavelet networks and genetic programming in the context of temperature derivatives. Int. J. Forecast. 33(1), 21–47 (2017)

    Google Scholar 

  6. B. Alexandrova-Kabadjova, E. Tsang, A. Krause, Evolutionary Learning of the Optimal Pricing Strategy in an Artificial Payment Card Market (Springer, Berlin, 2008), pp. 233–251

    MATH  Google Scholar 

  7. F. Allen, R. Karjalainen, Using genetic algorithms to find technical trading rules. J. Financ. Econ. 51, 245–271 (1999)

    Google Scholar 

  8. A. Bakhach, E.P.K. Tsang, H. Jalalian, Forecasting directional changes in the fx markets, in 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016), pp. 1–8

  9. R. Bauer, Genetic Algorithms and Investment Strategies (Wiley, New York, 1994)

    Google Scholar 

  10. A. Bazghandi, Techniques, advantages and problems of agent based modeling for traffic simulation. Int. J. Comput. Sci. Issues 9(3), 115–119 (2012)

    Google Scholar 

  11. Y.L. Becker, P. Fei, A. Lester, Stock Selection: An Innovative Application of Genetic Programming Methodology. Genetic Programming Theory and Practice IV (Springer, Berlin, 2017)

    Google Scholar 

  12. Y.L. Becker, H. Fox, P. Fei, An Empirical Study of Multi-objective Algorithms for Stock Ranking (Springer, Boston, 2008), pp. 239–259

    MATH  Google Scholar 

  13. Y.L. Becker, U.M. O’Reilly, Genetic programming for quantitative stock selection, in Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC ’09 (ACM, New York, 2009), pp. 9–16

  14. T. Berg, V. Burg, A. Gombovic, M. Puri, On the rise of fintechs—credit scoring using digital footprints (July 10, 2018). Available at SSRN: https://ssrn.com/abstract=3163781 or http://dx.doi.org/10.2139/ssrn.3163781

  15. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    MathSciNet  MATH  Google Scholar 

  16. A. Brabazon, J. Dang, I. Dempsey, M. O’Neill, D. Edelman, Natural Computing in Finance: A Review (Springer, Berlin, 2012), pp. 1707–1735

    Google Scholar 

  17. A. Brabazon, M. O’Neill, Biologically Inspired Algorithms for Financial Modelling (Springer, Berlin, 2006)

    MATH  Google Scholar 

  18. R. Bradley, A. Brabazon, M. O’Neill, Objective function design in a grammatical evolutionary trading system, in 2010 IEEE World Congress on Computational Intelligence (IEEE Press, Washington, DC, 2010), pp. 3487–3494

  19. S.H. Chen, Varieties of agents in agent-based computational economics: a historical and an interdisciplinary perspective. J. Econ. Dyn. Control 36(1), 1–25 (2012)

    MathSciNet  MATH  Google Scholar 

  20. S.H. Chen, C.L. Chang, Y.R. Du, Agent-based economic models and econometrics. Knowl. Eng. Rev. 27(2), 187–219 (2012)

    Google Scholar 

  21. S.H. Chen, T.W. Kuo, Evolutionary Computation in Economics and Finance: A Bibliography (Physica-Verlag, Heidelberg, 2002), pp. 419–455

    Google Scholar 

  22. S.H. Chen, C.H. Yeh, Evolving traders and the business school with genetic programming: a new architecture of the agent-based artificial stock market. J. Econ. Dyn. Control 25(3), 363–393 (2001). Agent-based Computational Economics (ACE)

    MATH  Google Scholar 

  23. S.H. Chen, C.H. Yeh, W.C. Lee, Option pricing with genetic programming, in Genetic Programming 1998: Proceedings of the Third Annual Conference, ed. by J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R. Riolo (Morgan Kaufmann, Burlington, 1998), pp. 32–37

    Google Scholar 

  24. N. Chidambaran, J. Triqueros, C.W.J. Lee, Option Pricing via Genetic Programming (Physica-Verlag, Heidelberg, 2002), pp. 383–397

    Google Scholar 

  25. I. Contreras, J.I. Hidalgo, L. Nuñez-Letamendía, J.M. Velasco, A meta-grammatical evolutionary process for portfolio selection and trading. Genet. Program. Evol. Mach. 18(4), 411–431 (2017)

    Google Scholar 

  26. J.C. Cox, S.A. Ross, M. Rubinstein, Option pricing: a simplified approach. J. Financ. Econ. 7(3), 229–263 (1979)

    MathSciNet  MATH  Google Scholar 

  27. S. Cramer, M. Kampouridis, A.A. Freitas, Decomposition genetic programming: an extensive evaluation on rainfall prediction in the context of weather derivatives. Appl. Soft Comput. 70, 208–224 (2018)

    Google Scholar 

  28. S. Cramer, M. Kampouridis, A.A. Freitas, A. Alexandridis, Predicting rainfall in the context of rainfall derivatives using genetic programming, in 2015 IEEE Symposium Series on Computational Intelligence (2015), pp. 711–718

  29. S. Cramer, M. Kampouridis, A.A. Freitas, A. Alexandridis, Pricing rainfall based futures using genetic programming, in 20th European Conference, EvoApplications: European Conference on the Applications of Evolutionary Computation, vol. 10199 (Springer, Berlin, 2017), pp. 17–33

  30. S. Cramer, M. Kampouridis, A.A. Freitas, A. Alexandridis, Stochastic model genetic programming: deriving pricing equations for rainfall weather derivatives. Swarm Evolut. Comput. 46, 184–200 (2019)

    Google Scholar 

  31. S. Cramer, M. Kampouridis, A.A. Freitas, A.K. Alexandridis, An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Syst. Appl. 85, 169–181 (2017)

    Google Scholar 

  32. W. Cui, A. Brabazon, M. O’Neill, Evolving dynamic trade execution strategies using grammatical evolution, in Applications of Evolutionary Computation, ed. by C. Di Chio (Springer, Berlin, 2010), pp. 192–201

    MATH  Google Scholar 

  33. W. Cui, A. Brabazon, M. O’Neill, Evolving efficient limit order strategy using grammatical evolution, In IEEE Congress on Evolutionary Computation (2010), pp. 1–6

  34. W. Cui, A. Brabazon, M. O’Neill, Adaptive trade execution using a grammatical evolution approach. Int. J. Financ. Mark. Deriv. 2(1/2), 4–31 (2011)

    Google Scholar 

  35. G. Deboeck, Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets (Wiley, New York, 1994)

    Google Scholar 

  36. M.A.H. Dempster, C.M. Jones, A real-time adaptive trading system using genetic programming. Quant. Finance 1(4), 397–413 (2001)

    MATH  Google Scholar 

  37. S. Ecca, M. Marchesi, A. Setzu, Modeling and simulation of an artificial stock option market. Comput. Econ. 32(1), 37–53 (2008)

    MATH  Google Scholar 

  38. G.P.C. Fung, J.X. Yu, W. Lam, Stock prediction: integrating text mining approach using real-time news. In 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings (2003), pp. 395–402

  39. D.K. Gode, S. Sunder, Allocative efficiency of markets with zero-intelligence traders: market as a partial substitute for individual rationality. J. Polit. Econ. 101(1), 119–137 (1993)

    Google Scholar 

  40. C. Grosan, A. Abraham, Stock market modeling using genetic programming ensembles, in Genetic Systems Programming: Theory and Experiences, ed. by N. Nedjah, L.M. Mourelle, A. Abraham (Springer, Berlin, 2006), pp. 131–146. https://doi.org/10.1007/3-540-32498-4_6

  41. J. Gypteau, F.E.B. Otero, M. Kampouridis, Generating directional change based trading strategies with genetic programming, in Applications of Evolutionary Computation, ed. by A.M. Mora, G. Squillero (Springer, Berlin, 2015), pp. 267–278

    Google Scholar 

  42. E. Hemberg, J. Rosen, G. Warner, S. Wijesinghe, U.M. O’Reilly, Tax non-compliance detection using co-evolution of tax evasion risk and audit likelihood, in Proceedings of the 15th International Conference on Artificial Intelligence and Law, ICAIL ’15 (ACM, New York, 2015), pp. 79–88

  43. E. Hemberg, J. Rosen, G. Warner, S. Wijesinghe, U.M. O’Reilly, Detecting tax evasion: a co-evolutionary approach. Artif. Intell. Law 24(2), 149–182 (2016)

    Google Scholar 

  44. H. Iba, T. Sasaki, Using genetic programming to predict financial data, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 1 (1999), pp. 244–251

  45. K. Izumi, An artificial market model of a foreign exchange market. PhD dissertation, Tokyo University (1999)

  46. M.A. Kaboudan, Genetic programming prediction of stock prices. Comput. Econ. 16(3), 207–236 (2000)

    MATH  Google Scholar 

  47. M. Kampouridis, A. Alsheddy, E. Tsang, On the investigation of hyper-heuristics on a financial forecasting problem. Ann. Math. Artif. Intell. 68(4), 225–246 (2013)

    MathSciNet  Google Scholar 

  48. M. Kampouridis, S.H. Chen, E. Tsang, Market fraction hypothesis: a proposed test. Int. Rev. Financ. Anal. 23, 41–54 (2012)

    Google Scholar 

  49. M. Kampouridis, F.E. Otero, Evolving trading strategies using directional changes. Expert Syst. Appl. 73, 145–160 (2017)

    Google Scholar 

  50. M. Kampouridis, F.E.B. Otero, Heuristic procedures for improving the predictability of a genetic programming financial forecasting algorithm. Soft Comput. 21(2), 295–310 (2015)

    Google Scholar 

  51. M. Kampouridis, E. Tsang, Investment opportunities forecasting: extending the grammar of a GP-based tool. Int. J. Comput. Intell. Syst. 5(3), 530–541 (2012)

    Google Scholar 

  52. M. Kolanovic, R.T. Krishnamachari, Big data and AI strategies: machine learning and alternative data approach to investing. J. P. Morgan Report (2018)

  53. J.R. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical report, Stanford, CA, USA (1990)

  54. J.R. Koza, A genetic approach to econometric modeling, in Economics and Cognitive Science, ed. by P. Bourgine, B. Walliser (Pergamon Press, Cambridge, 1992), pp. 57–75

    Google Scholar 

  55. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992)

    MATH  Google Scholar 

  56. W.B. Langdon, S.M. Gustafson, Genetic programming and evolvable machines: ten years of reviews. Genet. Program. Evol. Mach. 11(3), 321–338 (2010)

    Google Scholar 

  57. F. Larkin, C. Ryan, Good news: using news feeds with genetic programming to predict stock prices, in Genetic Programming, ed. by M. O’Neill (Springer, Berlin, 2008), pp. 49–60

    Google Scholar 

  58. T. Lensberg, A. Eilifsen, T.E. McKee, Bankruptcy theory development and classification via genetic programming. Eur. J. Oper. Res. 169(2), 677–697 (2006)

    MathSciNet  MATH  Google Scholar 

  59. S. Martinez-Jaramillo, E.P.K. Tsang, An heterogeneous, endogenous and coevolutionary GP-based financial market. IEEE Trans. Evol. Comput. 13(1), 33–55 (2009)

    Google Scholar 

  60. R.C. Merton, Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)

    MathSciNet  MATH  Google Scholar 

  61. C. Neely, P. Weller, R. Dittmar, Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J. Financ. Quant. Anal. 32(4), 405–426 (1997)

    Google Scholar 

  62. N.Y. Nikolaev, H. Iba, Genetic programming of polynomial models for financial forecasting, in Genetic Algorithms and Genetic Programming in Computational Finance, Chap. 5, ed. by S.H. Chen (Kluwer Academic Press, Dordrecht, 2002), pp. 103–123

    Google Scholar 

  63. M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming. Genet. Program. Evol. Mach. 11(3), 339–363 (2010)

    Google Scholar 

  64. C.S. Ong, J.J. Huang, G.H. Tzeng, Building credit scoring models using genetic programming. Expert Syst. Appl. 29(1), 41–47 (2005)

    Google Scholar 

  65. S. Salcedo-Sanz, J.L. Fernandez-Villacanas, M.J. Segovia-Varge, C. Bousono-Calzon, Genetic programming for the prediction of insolvency in non-life insurance companies. Comput. Oper. Res. 32(4), 749–765 (2005)

    MATH  Google Scholar 

  66. A. Samitas, S. Polyzos, C. Siriopoulos, Brexit and financial stability: an agent-based simulation. Econ. Model. 69, 181–192 (2018)

    Google Scholar 

  67. H. Schmidbauer, A. Rösch, T. Sezer, V.S. Tunalioğlu, Robust trading rule selection and forecasting accuracy. J. Syst. Sci. Complex. 27(1), 169–180 (2014)

    MATH  Google Scholar 

  68. K. Sörensen, Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    MathSciNet  MATH  Google Scholar 

  69. E. Tsang, J. Chen, Regime change detection using directional change indicators in the foreign exchange market to chart brexit. IEEE Trans. Emerg. Topics Comput. Intell. 2(3), 185–193 (2018)

    Google Scholar 

  70. E.P.K. Tsang, R. Tao, A. Serguieva, S. Ma, Profiling high-frequency equity price movements in directional changes. Quant. Finance 17(2), 217–225 (2017). https://doi.org/10.1080/14697688.2016.1164887

    Article  MathSciNet  MATH  Google Scholar 

  71. C. Tuite, M. O’Neill, A. Brabazon, Economic and financial modeling with genetic programming, in The Oxford Handbook of Computational Economics and Finance, Chapter 8, ed. by S.H. Chen, M. Kaboudan, Y.R. Du (Oxford Handbooks Online, Oxford, 2018), pp. 267–289

    Google Scholar 

  72. N. Wagner, Z. Michalewicz, M. Khouja, R.R. McGregor, Time series forecasting for dynamic environments: the dyfor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452 (2007)

    Google Scholar 

  73. P.A. Whigham, R. Withanawasam, Evolving a robust trader in a cyclic double auction market, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11 (ACM, New York, 2011), pp. 1451–1458

  74. H. White, A reality check for data snooping. Econometrica 68(5), 1097–1126 (2000)

    MathSciNet  MATH  Google Scholar 

  75. W. Yan, C.D. Clack, Evolving robust GP solutions for hedge fund stock selection in emerging markets. Soft. Comput. 15(1), 37–50 (2011)

    Google Scholar 

  76. Z. Yin, A. Brabazon, C. O’Sullivan, Adaptive genetic programming for option pricing, in Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’07 (ACM, New York, 2007), pp. 2588–2594

  77. Z. Yin, A. Brabazon, C. O’Sullivan, P.A. Hamill, A genetic programming approach for delta hedging. Genet. Program. Evol. Mach. 20(1), 67–92 (2019)

    Google Scholar 

  78. Z. Yin, A. Brabazon, C. O’Sullivan, M. O’Neill, A genetic programming approach for delta hedging, in 2015 IEEE Congress on Evolutionary Computation (CEC) (2015), pp. 3312–3318

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kampouridis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brabazon, A., Kampouridis, M. & O’Neill, M. Applications of genetic programming to finance and economics: past, present, future. Genet Program Evolvable Mach 21, 33–53 (2020). https://doi.org/10.1007/s10710-019-09359-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-019-09359-z

Keywords

Navigation