Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fault-tolerant Semiquantum key Distribution Over a Collective-dephasing Noise Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Semiquantum key distribution (SQKD) allows two remote users, quantum Alice and classical Bob, to share a secret key via a quantum channel and an authenticated classical channel. In most of the existing SQKD protocols, SQKD is possible only under the assumption of ideal quantum channels. However, the noise in quantum channels is unavoidable. In this paper, we propose two fault-tolerant SQKD protocols, the randomization-based SQKD protocol and the measure-resend SQKD protocol, which are robust against the collective-dephasing noise. Logical qubits have been selected to build travelling blocks for constructing a decoherence-free subspace (DFS). Compared with the previous SQKD protocols, our protocols can provide higher communication fidelity. In addition, a security proof is given in the subsequent section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. pp. 175–179 (1984)

  2. Shor, P.W., Preskill, J: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, CH, Brassard, G., Mermin, N.D.: Quantum cryptography without bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Huttner, B, Imoto, N, Gisin, N., et al.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  8. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Koashi, M., Imoto, N.: Quantum cryptography based on split transmission of one-bit information in two steps. Phys. Rev. Lett. 79, 2383–2386 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  11. Lo, HK, Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  12. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  13. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6, 1195–1202 (2008)

    Article  MATH  Google Scholar 

  16. Zhang, X.Z., Gong, W.G., Tan, Y.G., et al.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18, 2143–2148 (2009)

    Article  ADS  Google Scholar 

  17. Zou, X.F., Qiu, D.W., Li, L.Z., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)

    Article  ADS  Google Scholar 

  18. Zou, X.F., Qiu, D.W.: Reply to Comment on Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 83, 046302 (2011)

    Article  ADS  Google Scholar 

  19. Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9, 1427–1435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28, 100301 (2011)

    Article  ADS  Google Scholar 

  21. Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process 13, 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process 13, 2417–2436 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process 14, 681–686 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  25. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  26. Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

    Article  ADS  Google Scholar 

  27. Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72, 050304 (2005)

    Article  ADS  Google Scholar 

  28. Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 8, 1479–1489 (2009)

    Article  MATH  Google Scholar 

  29. Xiu, X.M., Dong, L., Gao, Y.J., et al.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171–4174 (2009)

    Article  ADS  Google Scholar 

  30. Sun, Y., Wen, Q.Y., Gao, F., et al.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  31. Ye, T.Y.: Information leakage resistant quantum dialogue against collective noise. Sci. China-Phys. Mech. Astron. 57, 2266–2275 (2014)

    Article  ADS  Google Scholar 

  32. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process 12, 2131–2142 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process 14, 1469–1486 (2015)

    Article  ADS  MATH  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  36. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A-Math. Gen. 39, 14089–14099 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Zhang, M.H., Li, H.F.: Fault tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process 15, 4283–4301 (2016)

    Article  ADS  MATH  Google Scholar 

  38. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  39. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  40. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  41. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., et al.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  42. Kempe, J., Bacon, D., Lidar, D.A., et al.: Theory of decoherence-free fault tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)

    Article  ADS  Google Scholar 

  43. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  44. Braginsky, V.B., Khalili, F.Y.: Quantum measurement. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  45. Kraus, K, Bohm, A, Dollard, JD, et al.: States, effects, and operations fundamental notions of quantum theory. Lect. Note Phys. 190, 1–151 (1983)

    Article  ADS  Google Scholar 

  46. Liu, C., Dutton, Z., Behroozi, C.H., et al.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  Google Scholar 

  47. Phillips, D.F., Fleischhauer, A., Mair, A., et al.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  ADS  Google Scholar 

  48. Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  49. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  50. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  51. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement purification based on parametric down conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  52. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  53. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  54. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  55. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  56. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  57. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  58. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  59. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  60. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  61. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  62. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  63. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  64. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  65. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  66. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  67. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  68. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  69. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  70. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093–4105 (2013)

    Article  ADS  Google Scholar 

  71. Cao, C., Ding, H., Li, Y., et al.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process 14, 1265–1277 (2015)

    Article  ADS  MATH  Google Scholar 

  72. Cao, C., Wang, T.J., Zhang, R., Wang, C.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace. Laser Phys. Lett. 12, 036001 (2015)

    Article  ADS  Google Scholar 

  73. Wang, C., Shen, W.W., Mi, S.C., et al.: Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bullet. 60, 2016–2021 (2015)

    Article  Google Scholar 

  74. Sheng, Y.B., Pan, J., Guo, R., et al.: Efficient N-particle W state concentration with different parity check gates. Sci. Chin. Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

  75. Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077–2099 (2015)

    Article  ADS  MATH  Google Scholar 

  76. Banerjee, A., Shukla, C., Pathak, A.: Maximal entanglement concentration for a set of (n + 1)-qubit states. Quantum Inf. Process 14, 4523–4536 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger-Horne-Zeilinger state. Quantum Inf. Process 14, 4131–4146 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Pan, J., Zhou, L., Gu, S.P., et al.: Efficient entanglement concentration for concatenated Greenberger- Horne-Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process 15, 1669–1687 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Cao, C., Chen, X., Duan, Y.W., et al.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. Chin-Phys. Mech. Astron. 59, 100315 (2016)

    Article  Google Scholar 

  80. Sheng, Y.B., Zhao, S.Y., Liu, J., et al.: Arbitrary four-photon cluster state concentration with cross-kerr nonlinearity. Int. J. Theor. Phys. 54, 1292–1303 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No 61273250) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No CX201618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MH., Li, HF., Peng, JY. et al. Fault-tolerant Semiquantum key Distribution Over a Collective-dephasing Noise Channel. Int J Theor Phys 56, 2659–2670 (2017). https://doi.org/10.1007/s10773-017-3422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3422-7

Keywords

Navigation