Abstract
Semiquantum key distribution (SQKD) allows two remote users, quantum Alice and classical Bob, to share a secret key via a quantum channel and an authenticated classical channel. In most of the existing SQKD protocols, SQKD is possible only under the assumption of ideal quantum channels. However, the noise in quantum channels is unavoidable. In this paper, we propose two fault-tolerant SQKD protocols, the randomization-based SQKD protocol and the measure-resend SQKD protocol, which are robust against the collective-dephasing noise. Logical qubits have been selected to build travelling blocks for constructing a decoherence-free subspace (DFS). Compared with the previous SQKD protocols, our protocols can provide higher communication fidelity. In addition, a security proof is given in the subsequent section.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. pp. 175–179 (1984)
Shor, P.W., Preskill, J: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)
Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)
Bennett, CH, Brassard, G., Mermin, N.D.: Quantum cryptography without bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)
Huttner, B, Imoto, N, Gisin, N., et al.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995)
Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)
Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)
Koashi, M., Imoto, N.: Quantum cryptography based on split transmission of one-bit information in two steps. Phys. Rev. Lett. 79, 2383–2386 (1997)
Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)
Lo, HK, Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)
Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)
Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)
Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6, 1195–1202 (2008)
Zhang, X.Z., Gong, W.G., Tan, Y.G., et al.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18, 2143–2148 (2009)
Zou, X.F., Qiu, D.W., Li, L.Z., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)
Zou, X.F., Qiu, D.W.: Reply to Comment on Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 83, 046302 (2011)
Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9, 1427–1435 (2011)
Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28, 100301 (2011)
Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process 13, 1457–1465 (2014)
Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process 13, 2417–2436 (2014)
Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process 14, 681–686 (2015)
Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)
Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)
Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)
Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72, 050304 (2005)
Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 8, 1479–1489 (2009)
Xiu, X.M., Dong, L., Gao, Y.J., et al.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171–4174 (2009)
Sun, Y., Wen, Q.Y., Gao, F., et al.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)
Ye, T.Y.: Information leakage resistant quantum dialogue against collective noise. Sci. China-Phys. Mech. Astron. 57, 2266–2275 (2014)
Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process 12, 2131–2142 (2013)
Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process 14, 1469–1486 (2015)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)
Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)
Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A-Math. Gen. 39, 14089–14099 (2006)
Zhang, M.H., Li, H.F.: Fault tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process 15, 4283–4301 (2016)
Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)
Kwiat, P.G., Berglund, A.J., Altepeter, J.B., et al.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)
Kempe, J., Bacon, D., Lidar, D.A., et al.: Theory of decoherence-free fault tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)
Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
Braginsky, V.B., Khalili, F.Y.: Quantum measurement. Cambridge University Press, Cambridge (1992)
Kraus, K, Bohm, A, Dollard, JD, et al.: States, effects, and operations fundamental notions of quantum theory. Lect. Note Phys. 190, 1–151 (1983)
Liu, C., Dutton, Z., Behroozi, C.H., et al.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)
Phillips, D.F., Fleischhauer, A., Mair, A., et al.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)
Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)
Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)
Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement purification based on parametric down conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)
Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)
Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)
Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)
Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)
Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)
Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)
Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)
Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)
Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)
Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)
Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)
Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)
Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)
Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)
Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)
Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)
Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093–4105 (2013)
Cao, C., Ding, H., Li, Y., et al.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process 14, 1265–1277 (2015)
Cao, C., Wang, T.J., Zhang, R., Wang, C.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace. Laser Phys. Lett. 12, 036001 (2015)
Wang, C., Shen, W.W., Mi, S.C., et al.: Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bullet. 60, 2016–2021 (2015)
Sheng, Y.B., Pan, J., Guo, R., et al.: Efficient N-particle W state concentration with different parity check gates. Sci. Chin. Phys. Mech. Astron. 58, 060301 (2015)
Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077–2099 (2015)
Banerjee, A., Shukla, C., Pathak, A.: Maximal entanglement concentration for a set of (n + 1)-qubit states. Quantum Inf. Process 14, 4523–4536 (2015)
Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger-Horne-Zeilinger state. Quantum Inf. Process 14, 4131–4146 (2015)
Pan, J., Zhou, L., Gu, S.P., et al.: Efficient entanglement concentration for concatenated Greenberger- Horne-Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process 15, 1669–1687 (2016)
Cao, C., Chen, X., Duan, Y.W., et al.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. Chin-Phys. Mech. Astron. 59, 100315 (2016)
Sheng, Y.B., Zhao, S.Y., Liu, J., et al.: Arbitrary four-photon cluster state concentration with cross-kerr nonlinearity. Int. J. Theor. Phys. 54, 1292–1303 (2015)
Acknowledgments
This work is supported by the National Natural Science Foundation of China (Grant No 61273250) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No CX201618).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, MH., Li, HF., Peng, JY. et al. Fault-tolerant Semiquantum key Distribution Over a Collective-dephasing Noise Channel. Int J Theor Phys 56, 2659–2670 (2017). https://doi.org/10.1007/s10773-017-3422-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10773-017-3422-7