Abstract
We introduce a linear programming framework for obtaining upper bounds for the potential energy of spherical codes of fixed cardinality and minimum distance. Using Hermite interpolation we construct polynomials to derive corresponding bounds. These bounds are universal in the sense that they are valid for all absolutely monotone potential functions and the required interpolation nodes do not depend on the potentials.
Similar content being viewed by others
References
Bachoc C., Vallentin F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21, 909–924 (2008).
Bannai E., Okuda T., Tagami M.: Spherical designs of harmonic index \(t\). J. Approx. Theory 195, 1–18 (2015).
Ballinger B., Blekherman G., Cohn H., Giansiracusa N., Kelly E., Shűrmann A.: Experimental study of energy-minimizing point configurations on spheres. Exp. Math. 18, 257–283 (2009).
Bétermin L., Sandier E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47, 39–74 (2018).
Bondarenko A., Radchenko D., Viazovska M.: Well-separated spherical designs. Constr. Approx. 41, 93–112 (2015).
Borodachov S.V., Hardin D.P., Saff E.B.: Discrete Energy on Rectifiable Sets. Springer, New York (2019).
Boyvalenkov P., Dodunekov S., Musin O.: A survey on the kissing numbers. Serdica Math. J. 38, 507–522 (2012).
Boyvalenkov P., Dragnev P., Hardin D., Saff E., Stoyanova M.: Universal upper and lower bounds on energy of spherical designs. Dolomites Res. Notes Approx. 8, 51–65 (2015).
Boyvalenkov P., Dragnev P., Hardin D., Saff E., Stoyanova M.: Universal lower bounds for potential energy of spherical codes. Constr. Approx. 44, 385–415 (2016).
Boyvalenkov P., Dragnev P., Hardin D., Saff E., Stoyanova M.: Energy bounds for codes and designs in Hamming spaces. Des. Codes Cryptogr. 82(1), 411–43 (2017).
Boyvalenkov P., Dragnev P., Hardin D., Saff E., Stoyanova M.: On spherical codes with inner products in prescribed interval. Des. Codes Cryptogr. 87, 299–315 (2019).
Boyvalenkov P., Dragnev P., Hardin D., Saff E., Stoyanova M.: Energy bounds for codes in polynomial metric spaces. Anal. Math. Phys. 9(2), 781–808 (2019).
Boyvalenkov P., Dragnev P., Hardin D., Saff E., Stoyanova M.: Next levels universal bounds for spherical codes: the Levenshtein framework lifted, submitted. arXiv:1906.03062.
Boyvalenkov P., Dragnev P., Hardin D., Saff E., Stoyanova M.: Universal bounds for size and energy of codes of given minimum and maximum distances, submitted. arXiv:1910.07274.
Cohn H., Kumar A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99–148 (2006).
Conte S.D., de Boor C.: Elementary Numerical Analysis: An Algorithmic Approach. SIAM, Philadelphia (2017).
Delsarte P., Goethals J.-M., Seidel J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977).
Ericson Th, Zinoviev V.: Codes on Euclidean Spheres. North-Holland Mathematical LibraryElsevier, Amsterdam (2001).
Grabner P., Stepanyuk T.: Comparison of probabilistic and deterministic point sets. J. Approx. Theory 239, 128–143 (2019).
Hesse K.: The \(s\)-energy of spherical designs on \(\mathbb{S}^2\). Adv. Comput. Math. 30, 37–59 (2009).
Hesse K., Leopardi P.: The Coulomb energy of spherical designs on \(\mathbb{S}^2\). Adv. Comput. Math. 28, 331–354 (2008).
Koorwinder T.H.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25, 236–246 (1973).
Leopardi P.: Discrepancy, separation and Riesz energy of finite point sets on the unit sphere. Adv. Comput. Math. 39, 27–43 (2013).
Levenshtein V.I.: On bounds for packings in \(n\)-dimensional Euclidean space. Sov. Math. Dokl. 20, 417–421 (1979).
Levenshtein V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl. Math. 25, 1–82 (1992).
Levenshtein V.I.: Universal bounds for codes and designs, Ch. 6. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 499–648. Elsevier, Amsterdam (1998).
Machado F.C., de Oliveira Filho F.M.: Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Exp. Math. 27, 362–369 (2018).
Mittelmann H.D., Vallentin F.: High-accuracy semidefinite programming bounds for kissing numbers. Exp. Math. 19, 175–179 (2010).
Musin O.: The kissing number in four dimensions. Ann. Math. 168, 1–32 (2008).
Odlyzko A.M., Sloane N.J.A.: New bounds on the number of unit spheres that can touch a unit sphere in \(n\) dimensions. J. Comb. Theory Ser. A 26, 210–214 (1979).
Schoenberg I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942).
Schütte K., van der Waerden B.L.: Auf welcher Kugel haben 5, 6, 7, oder 8 Punkte mit Mindestabstand Eins Platz? Math. Ann. 123, 96–124 (1951).
Schütte K., van der Waerden B.L.: Das Problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1952).
Stepanyuk T.: Estimates for logarithmic and Riesz energies for spherical \(t\)-designs. arXiv:1901.00437.
Szegő G.: Orthogonal Polynomials, vol. 23. American Mathematical Society Colloquium Publications, Providence (1939).
Wagner G.: On means of distances on the surface of a sphere (upper bounds). Pac. J. Math. 154, 381–396 (1992).
Yudin V.A.: Minimum potential energy of a point system of charges. Diskret. Mat. 4(2), 115–121 (1992).
Zinoviev D., Zinoviev V.: On the spherical code \((4,\rho ,9)\). In: Proceedings of the Eighth International Workshop on Optimal Codes and Related Topics, pp. 142–148, Sofia, Bulgaria, 10–14 July (2017).
Acknowledgements
The authors thank the anonymous referees for helpful suggestions and comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The research of P. G. Boyvalenkov was partially supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)”, financed by the Bulgarian Ministry of Education and Science. The research of P. D. Dragnev was supported, in part, by a Simons Foundation Grant No. 282207. The research of D. P. Hardin and E. B. Saff was supported, in part, by the U. S. National Science Foundation under Grant DMS-1516400. The research of M. M. Stoyanova was supported by a Bulgarian NSF contract DN2/02-2016. Research for this article was started while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Point Configurations in Geometry, Physics and Computer Science” program supported by the National Science Foundation under Grant No. DMS-1439786.
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography 2019”.
Rights and permissions
About this article
Cite this article
Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P. et al. Upper bounds for energies of spherical codes of given cardinality and separation. Des. Codes Cryptogr. 88, 1811–1826 (2020). https://doi.org/10.1007/s10623-020-00733-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00733-y