Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Investigations of precision agriculture technologies with application to developing countries

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Precision agriculture (PA), also known as “site-specific management (SSM)”, “prescription farming”, or “variable-rate technology”, offers a practical option to address the rising food demand for optimal and sustainable agriculture. Effectively identifying and analysing the spatial and temporal changes in the fields requires the application of agriculture sciences and information technologies. To sustainably conserve natural resources, including water, air, and soil quality, while reducing production costs, various precision agriculture approaches have evolved worldwide. The application of sensor-based technology and remote sensing modifies conventional farming methods. The agricultural industry has grown remarkably due to this modernization of agriculture. This study analyses every technical facet of precision agriculture. It looks at different sensor types and pertinent technology related to precision farming. Precision agriculture and the tools and technologies needed to implement it are also discussed, with an eye on the needs of small-scale farmers in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(Source: Singh et al., 2018)

Similar content being viewed by others

Data availability

All the relevant data are provided in the paper only.

Code availability

Not applicable.

References

  • Aakash, M. K., Bhayal, L., & Pankaj, B. (2020). Fertigation: A way to enhance crop yield. Popular Kheti, 8(2), 47–52.

    Google Scholar 

  • Abdullaev, I., Hassan, M. U., & Jumaboev, K. (2007). Water saving and economic impacts of land leveling: The case study of cotton production in Tajikistan. Irrigation and Drainage Systems, 21, 251–263. https://doi.org/10.1007/s10795-007-9034-2

    Article  Google Scholar 

  • Abulude, F., Akinnusotu, A., & Adeyemi, A. (2015). Global positioning system and it’s wide applications. Continental J. Information Technology. https://doi.org/10.5707/cjit.2015.9.1.22.32

    Article  Google Scholar 

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91. https://doi.org/10.1016/j.compag.2004.03.002

    Article  Google Scholar 

  • Adamchuk, V. I., Lund, E. D., Reed, T. M., & Ferguson, R. B. (2007). Evaluation of an on-the-go technology for soil pH mapping. Precision Agriculture, 8, 139–149. https://doi.org/10.1007/s11119-007-9034-0

    Article  Google Scholar 

  • Adamchuk, V. I., Morgan, M. T., & Sumali, H. (2001). Application of a strain gauge array to estimate soil mechanical impedance on-the-go. Transactions of ASAE, 44, 1377–1383.

    Article  Google Scholar 

  • Agarwal, M. C., & Goel, A. C. (1981). Efect of feld levelling quality on irrigation efciency and crop yield. Journal of Agricultural Water Management, 4, 457–464. https://doi.org/10.1016/0378-3774(81)90033-0

    Article  Google Scholar 

  • Aggarwal, R., Kaur, S., & Singh, A. (2010). Assessment of saving in water resources through precision land levelling in Punjab. Journal of Soil and Water Conservation, 9(3), 182–185.

    Google Scholar 

  • Aggelopoulou, K. D., Pateras, D., Fountas, S., Gemtos, T. A., & Nanos, G. D. (2010). Soil spatial variability and site-specific fertilization maps in an apple orchard. Precision Agriculture, 12, 118–129.

    Article  Google Scholar 

  • Ahmad, I. S., Reid, J. F., Noguchi, N., & Hansen, A. C. (1999). Nitrogen sensing for precision agriculture using chlorophyll maps. In ASAE meeting presentation (pp. 18–21), ASAE paper No. 99-3035, American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Ali, M. H., Jakirul Sarker, M., Rahman, M. S., Rabbi, F., Hossen, M. S., & Alomgir Kabir, M. (2022). Design and development of a GPS-guided spray machine for reducing pesticide use on agricultural land in Bangladesh. In 2022 IEEE 12th symposium on computer applications & industrial electronics (ISCAIE), (pp. 66–70). https://doi.org/10.1109/ISCAIE54458.2022.9794549.

  • Ali, M. A., Dong, L., Dhau, J., Khosla, A., & Kaushik, A. (2020). Perspective: Electrochemical sensors for soil quality assessment. Journal of the Electrochemical Society, 167(3), 037550. https://doi.org/10.1149/1945-7111/ab69fe

    Article  ADS  CAS  Google Scholar 

  • Andrade, P. (2001). Soil profile force measurements using an instrumented tine (1st ed., p. 22). ASAE.

    Google Scholar 

  • Andrade-Sanchex, P., & Haun, J. T. (2013). Yield monitoring technology for irrigated cotton and grains in Arizona: Hardware and software solutions. AX 1596. Tucson: University of Arizona.

    Google Scholar 

  • Anom, S. I. M., Shibusawa, S., Sasao, A., Sakai, K., Sato, H., Hirako, S., & Blackmore, S. (2000). Moisture, soil organic matter and nitrate nitrogen content maps using the real-time soil spectrophotometer. IFAC Proceedings, 33(29), 307–312.

    Google Scholar 

  • Anonymous. (2018). Annual report 2018–2019. Department of biotechnology ministry of science & technology government of India. pp. 38. https://dbtindia.gov.in/sites/default/files/Final_DBT_English_Annual_Report_2018-19.pdf

  • Anonymous (2019) Climate change affects grain production in India; rice crop significantly declines, says study. News on https://www.financialexpress.com/economy/climate-change-affects-grain-production-in-india-rice-crop-significantly-declines-says-study/1610838/. Website visited on 14. 11. 2022.

  • Anonymous. (2023). Share of agriculture in India’s GDP declined to 15% in FY23: Govt. The Economic Times. ePaper, 19.12.2023. https://economictimes.indiatimes.com/news/economy/agriculture. Website visited on 14. 01. 2024.

  • Aryal, J. P., Mehrotra, M. P., Jat, M. L., & Sidhu, H. S. (2015). Impacts of laser land leveling in rice-wheat systems of the north-western indo-gangetic plains of India. Food Security, 7(3), 725–738. https://doi.org/10.1007/s12571-015-0460-y

    Article  Google Scholar 

  • Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing of Environment, 5, 949–981.

    Article  Google Scholar 

  • Auernhammer, H. (2001). Precision farming: The environmental challenge. Computers and Electronics in Agriculture, 30(1–3), 31–43. https://doi.org/10.1016/S0168-1699(00)00153-8

    Article  Google Scholar 

  • Austin, R., Gatiboni, L., & Havlin, J. (2020). Soil sampling strategies for site-specific field management. N.C. State Extension AG-439-36.

  • Ayranci, R., & Ak, M. (2019). An electrochemical sensor platform for sensitive detection of iron (III) ions based on pyrene-substituted poly(25-dithienylpyrrole). Journal of The Electrochemical Society, 166(6), B291–B296. https://doi.org/10.1149/2.0101906jes.

  • Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Wal, T. V. D., et al. (2017). Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability, 9(8), 1339.

    Article  Google Scholar 

  • Banu, S. (2015). Precision agriculture: Tomorrow’s technology for today’s farmer. Journal of Food Processing & Technology, 6(8), 1–6.

    MathSciNet  Google Scholar 

  • Barbedo, J. G. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 40. https://doi.org/10.3390/drones3020040

    Article  Google Scholar 

  • Basnet, B., & Bang, J. (2018). The state-of-the-art of knowledge-intensive agriculture, A review on applied sensing systems and data analytics.

  • Bharatiya, P., & Kale, M., (2018). Precision agriculture for small farm holders. In Proceedings of the 14th international conference on precision agriculture (pp. 1–10). Montreal, Quebec, Canada.

  • Böcker, T., Britz, W., Möhring, N., & Finger, R. (2019). An economic and environmental assessment of a glyphosate ban for the example of maize production. European Review of Agricultural Economics. https://doi.org/10.1093/erae/jby050

    Article  Google Scholar 

  • Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5(4), 359–387. https://doi.org/10.1023/B:PRAG.0000040806.39604.aa

    Article  Google Scholar 

  • Borgelt, S., C., Harrison, J., D., Sudduth, K. A., & Birrell, S. J. (1996). Evaluation of GPS for applications in precision agriculture. Applied Engineering in Agriculture, 12(6), 633–638. https://doi.org/10.13031/2013.25692

  • Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., & Jiang, R. (2013). Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crops Research, 154, 133–144. https://doi.org/10.1016/j.fcr.2013.08.005

    Article  Google Scholar 

  • Chaudhary, S., Negi, P. S., Singh, A., Prasad, R. K., Pallavi, Singh, B., & Rajendra. (2020). Variable rate application technology in India. The Pharma Innovation Journal, SP-9(9), 166–168.

    Google Scholar 

  • Choudhary, M. A., Mushtaq, A., Gill, M., Kahlown, A., & Hobbs, P. R. (2002). Evaluation of resource conservation technologies in rice wheat system of Pakistan. In: Proceedings of the international workshop on developing an action program for farm level impact in rice-wheat system of Indo-Gangetic plains, 25–27 September 2000, New Delhi, India. Rice-wheat Consortium Paper Series 14, New Delhi, India. Rice Wheat Consortium for the Indo-Gangetic Plains. pp 148.

  • Clark, R. L., Chen, F., Kissel, D. E., & Adkins, W. (2000). Mapping soil hardpans with the penetrometer and electrical conductivity. In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–12). American Society of Agronomy.

  • Conesa, M. R., Conejero, W., Vera, J., & Ruiz-Sánchez, M. C. (2021). Soil-based automated irrigation for a nectarine orchard in two water availability scenarios. Irrigation Science, 39, 421–439.

    Article  Google Scholar 

  • da Costa Lima, A., & Mendes, K. F. (2020). Variable rate application of herbicides for weed management in pre-and postemergence. In Pests, weeds and diseases in agricultural crop and animal husbandry production. IntechOpen. https://doi.org/10.5772/intechopen.93558

  • Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrigation and Drainage Systems, 19, 223–249.

    Article  Google Scholar 

  • Dabas, M., Brisard, A., Tabbagh, J., & Boigontier, D. 2000. Use of a new sub-metric multi-depth soil imaging system (MuCEP). In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–13). American Society of Agronomy.

  • Dammer, K. H., & Adamek, R. (2012). Sensor-based insecticide spraying to control cereal aphids and preserve ladybeetles. Agronomy Journal, 104(6), 1694–1701.

    Article  Google Scholar 

  • Deguise, J. C., & Mc Nairn, H. (2000). Hyperspectral remote sensing for precision agriculture. In Proceedings of fifth international conference on precision agriculture (CD) (pp. 16–19), Bloomington, MN, USA.

  • Dharini, P. (2015). Laser land levelling: how it strikes all the right climate-smart chords. News, Climate Change Agriculture and Food security CCAFS. https://ccafs.cgiar.org/research-highlight/laser-land-levelling-how-it-strikes-all-right-climate-smart-chords#.Xy7uYIgzbIV.

  • Dhas, A. C. (2009). Agricultural crisis in India: The root cause and consequences. pp 1–14. Munich Personal RePEc Archive. MPRA Paper No. 18930, posted 01 Dec 2009. https://mpra.ub.uni-muenchen.de/18930/

  • Dobermann, A., Blackmore, B. S., Cook, S., & Adamchuk, V. I. (2004). Precision farming: challenges and future directions. In: New directions for a diverse planet. Proceeding of 4th international crop sci. congr. (pp. 1–19).

  • Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Chatuporn, S., Sookthongsa, J., … Adviento, M. A. A. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74(2002), 37–66.

    Article  Google Scholar 

  • Downey, D., Giles, D., & Slaughter, D. (2004). Weeds accurately mapped using DGPS and ground-based vision identification. Hilgardia, 58(4), 218–221. https://doi.org/10.3733/ca.v058n04p218

    Article  Google Scholar 

  • Drummond, P. E., Christy, C. D., & Lund, E. D. (2000). Using an automated penetrometer and soil EC probe to characterize the rooting zone. In Proceedings of the 5th International conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–9). American Society of Agronomy.

  • Du, Q., Chang, N., Yang, C., & Srilakshmi, K. R. (2008). Combination of multispectral remote sensing variable rate technology and environmental modeling for citrus pest management. Journal of Environmental Management, 86(1), 14–26. https://doi.org/10.1016/j.jenvman.2006.11.019

  • Dulaney, W. P., Daughtry, C. S. T., Walthall, C. L., Timlin, D. J., Gish, T. J., & Kung, K. J. S. (2000). Use of ground-penetrating radar and remotely sensed data to understand yield variability under drought conditions. In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–12). American Society of Agronomy.

  • Dux, D.L., Strickland, R.M., & Ess, D.R., (1999). Generating field maps from data collected by speech recognition. ASAE Paper No. 99-1099, American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Dziuk, B. (2021). 5 Benefits of farm GPS tracking + what today’s Farmers think about it. Rastrac, https://info.rastrac.com/blog/farm-gps-tracking

  • Ess, D. R., Parsons, S. D., & Strickland, R. M. (1997). Evaluation of commercially-available software for grain yield mapping. ASAE Paper No. 97-1033, American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Evans, D. E., Sadler, E.J., Camp, C.R., & Millen, J.A. (2000). Spatial canopy temperature measurements using center pivot mounted IRTs. In Proceedings of the 5th international conference on precision Agriculture, Bloomington, Minnesota (pp. 1–11).

  • Evans, R. G., LaRue, J., Stone, K. C., & King, B. A. (2013). Adoption of site-specific variable rate sprinkler irrigation systems. Irrigation Science, 31(4), 871–887.

    Article  Google Scholar 

  • Fan, G., Zhang, N., Sun, & Y., Oard, D. (2001). Simultaneous sensing of soil conductive and capacitive properties. Paper No. 01-1021, ASAE, St. Joseph, Michigan.

  • Ferguson, R. W., & Hergert, G. W. (2009). Soil sampling for precision agriculture. Precision agriculture, Extension EC154, Univeristy of Nebrasaka Lincoln, pp. 1–4.

  • Feyaerts, F., Pollet, P., Gool, L. V., & Wambacq, v (1998). Sensor for weed detection based on spectral measurements. In Proceedings of the 4th international conference on precision agriculture, 19–22 July, St. Paul, Minn. 1537–1548. Madision, Wisc.: ASA/CSSA/SSSA.

  • Franzen, A., & Humburg, D. (2016). Chapter 50: Calibrating yield monitors. In D. E. Clay, C. G. Carlson, S. A. Clay, & E. Byamukama (Eds.), iGROW corn: Best management practices. Brookings: South Dakota State University.

    Google Scholar 

  • Furuya, S. (1987). Growth diagnosis of rice plants by means of leaf color. Japan Agricultural Research Quarterly, 20, 147–153.

    MathSciNet  Google Scholar 

  • Gale, A. (2018). How technology is changing farming. Digital Journey. https://digitalresources.nz/article/6dJ9T3P

  • Gangwar, D. S., & Tyagi, S. (2016). Challenges and opportunities for sensor and actuator networks in Indian agriculture. In 2016 8th international conference on computational intelligence and communication networks (CICN) (pp. 38–42). IEEE.

  • Gaur, M. K., Chand, K., Louhaichi, M., Johnson, D. E., Misra, A. K., & Roy, M. M. (2013). Role of GPS in monitoring livestock migration. Indian Cartographer, 33, 496–501.

    Google Scholar 

  • Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. Frontiers in Earth Science, 5, 229–238.

    Google Scholar 

  • Gikunda, A. (2020). Applications of GPS in farming. GrindGIS, Applications of GPS in farming (grindgis.com)

  • Goddard, T. (1997). What is precision farming. In Proceedings: precision farming conference (Vol. 20). January 20–21. Taber, Alberta, Canada.

  • Gonzalez-Dugo, V., Zarco-Tejada, P., Nicola, E., Nortes, P. A., Alarcon, J. J., Intrigliolo, D. S., & Fereres, E. (2013). Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14(6), 660–678. https://doi.org/10.1007/s11119-013-9322-9

    Article  Google Scholar 

  • Grisso, R., Alley, M., Thomason, W., Holshouser, D., & Roberson, O. T. (2011). Precision farming tools: Variable-rate application. Precision, Geospatial, & Sensor Technologies. 442–505.

  • Grisso, R. B., Alley, M., & Groover, G. (2009). Precision farming tools: GPS navigation (pp. 442–501). Virginia Cooperative Extension Publication.

    Google Scholar 

  • Hakkim, V. M. A., Joseph, E. A., Gokul, A. J. A., & Mufeedha, K. (2016). Precision farming: The future of Indian agriculture. Journal of Applied Biology & Biotechnology, 4(6), 68–72. https://doi.org/10.7324/JABB.2016.40609

    Article  Google Scholar 

  • Hamada, Y., Matsuo, Y., & Yamashita, T. (2009). Agricultural vehicle navigation system: Development of a guidance information display. Japan Agricultural Research Quarterly, 43, 187–192.

    Article  Google Scholar 

  • Hanquet, B., Sirjacobs, D., Destain, M. F., Frankinet, M., & Verbrugge, J. C. (2004). Analysis of soil variability measured with a soil strength sensor. Precision Agriculture, 5, 227–246. https://doi.org/10.1023/B:PRAG.0000032763.54104.b4

    Article  Google Scholar 

  • Harmel, R. D., Kenimer, A. L., Searcy, S. W., & Torbert, H. A. (2004). Runoff water quality impact of variable rate sidedress nitrogen application. Precision Agriculture, 5(3), 247–261.

    Article  Google Scholar 

  • Hummel, J. W., Sudduth, K. A., & Hollinger, S. E. (2001). Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture, 32(2), 149–165. https://doi.org/10.1016/S0168-1699(01)00163-6

    Article  Google Scholar 

  • Islam, Z., Bagchi, B., & Hossain, M. (2007). Adoption of leaf color chart for nitrogen use efficiency in rice: Impact assessment of a farmer-participatory experiment in West Bengal, India. Field Crops Research, 103(1), 70–75.

    Article  Google Scholar 

  • Jat, M. L., Pal, S. S., SubbaRao, A. V. M., & Sharma, S. K. (2003). Improving resource use efficiency in wheat through laser land leveling in an ustochrept of Indo-Gangetic plain. In: National seminar on developments in soil science, 68th annual convention of the Indian society of soil science, November 4–8, 2003, CSAUAT, Kanpur (UP).

  • Jatin, S. M., & Sharma, A. (2012). Global positioning system for precise area measurement in the field. Agricultural Engineering Today, 36(1), 1–4.

    Google Scholar 

  • Jensen, H. G., Jacobsen, L. B., Pedersen, S. M., & Tavella, E. (2012). Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precision Agriculture, 13(6), 661–677.

    Article  Google Scholar 

  • Johansen, C. J. (1996). Overview of precision farming. In Proceedings of information Ag conference, 1996.

  • Kapur, R. (2018). Usage of technology in the agricultural sector. Acta Scientific Agriculture, 2(6), 78–84.

    Google Scholar 

  • Kempenaar, C., Been, T., Booij, J., van Evert, F., Michielsen, J. M., & Kocks, C. (2018). Advances in variable rate technology application in potato in the Netherlands. Potato Research, 60(3–4), 295–305.

    PubMed Central  Google Scholar 

  • Keskin, M., Dodd, R. B., Han, Y. J., & Khalilian, A. (1999). Attenuation of different types of electromagnetic radiation by cotton fiber as a function of mass. American Society of Agricultural Engineers, 1–15, ASAE Paper No. 99.

  • Kim, H. J., Sudduth, K. A., & Hummel, J. W. (2009). Soil macronutrient sensing for precision agriculture. Journal of Environmental Monitoring, 11, 1810–1824. https://doi.org/10.1039/b906634a

    Article  CAS  PubMed  Google Scholar 

  • King, J. A., Dampney, P. M. R., Lark, R. M., Wheeler, H. C., Bradley, R. I., et al. (2005). Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing. Precision Agriculture, 6, 167–181. https://doi.org/10.1007/s11119-005-1033-4

    Article  Google Scholar 

  • Kitchen, N. R., Sudduth, K. A., Birrel, S. J., & Borgelt, S.C. (1996). Missourei precision agriculture research and education. In Proceedings of the 3rd international conference of precision agriculture, 1996. ASA/CSSA/SSSA.

  • Koundal, A., Singh, M., Sharma, A., Mishra, P. K., & Sharma, K. (2012). Development and evaluation of an experimental machine for variable rate application of granular fertilizers. In Full length paper in proceeding of 6th international conference on sensing technology (ICST) at CDAC, Kolkata from Dec. 18–21, 2012, pp: 376–379.

  • Kumar, S., Singh, M., Mirzakhaninafchi, H., Modi, R. U., Ali, M., Bhardwaj, M., & Soni, R. (2018). Practical and affordable technologies for precision agriculture in small fields: Present status and scope in India. In: Proceedings of the 14th international conference on precision agriculture, pp. 1–9.

  • Kumar, M., Reddy, K. S., Adake, R. V., & Rao, C. V. K. N. (2015). Solar powered micro-irrigation system for small holders of dryland agriculture in India. Agricultural Water Management, 158, 112–119. https://doi.org/10.1016/j.agwat.2015.05.006

    Article  Google Scholar 

  • Lambert, D., & Lowenberg-De Boer, J. (2000). Precision agriculture profitability review (pp. 1–154). Purdue Univ.

    Google Scholar 

  • Lang, L. (1992) GPS, GIS, remote sensing: An overview. Earth Observation Magazine, pp. 23–26.

  • Lass, L. W., & Callihan, R. H. (1993). GPS and GIS for weed surveys and management. Weed Technology, 7(1), 249–254.

    Article  Google Scholar 

  • Lowenberg-DeBoer, J. 2003. Precision farming or convenience agriculture. In Solutions for a better environment: Proceedings of the 11th Australian agronomy conference.

  • Lund, E. D., Christy, C. D., & Drummond, P. E. (2000). Using yield and soil electrical conductivity (EC) maps to derive crop production performance information. In Proceedings of fifth international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–10). American Society of Agronomy.

  • Madramootoo, C. A., & Morrison, J. (2013). Advances and challenges with micro-irrigation. Irrigation and Drainage, 62(3), 255–261. https://doi.org/10.1002/ird.1704

    Article  Google Scholar 

  • Maes, W. H., & Steppe, K. (2012). Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. Journal of Experimental Botany, 63, 4671–4712.

    Article  CAS  PubMed  Google Scholar 

  • Magalhães, P. S. G., & Cerri, D. G. P. (2007). Yield monitoring of sugar cane. Biosystems Engineering, 96(1), 1–6. https://doi.org/10.1016/j.biosystemseng.2006.10.002

    Article  Google Scholar 

  • Magar, A. P., Singh, M., Mahal, J. S., Mishra, P. K., Kumar, R., Sharma, K., & Sharma, A. (2014). Efficient tractor operation through satellite navigator. Scientific Research and Essays, 9, 768–777.

    Article  Google Scholar 

  • Maleki, M. R., Mouazen, A. M., De Ketelaere, B., Ramon, H., & De Baerdemaeker, J. (2008). On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor. Biosystems Engineering, 99(1), 35–46. https://doi.org/10.1016/j.biosystemseng.2007.09.007

    Article  Google Scholar 

  • Mandal, S. K., & Maity, A. (2013). Precision farming for small agricultural farm: Indian scenario. American Journal of Experimental Agriculture, 3(1), 200–217. https://doi.org/10.9734/AJEA/2013/2326

    Article  Google Scholar 

  • Manor, G., & Clark, R. L. (2001). Development of an instrumented subsoiler to map soil hard-pans and real-time control of subsoiler depth (1st ed., p. 12). ASAE.

    Google Scholar 

  • Marcotte, D., Savoie, P., Martel, H., & Theriault, R. (1999). Precision agriculture for hay and forage crops: A review of sensors and potential applications. ASAE Paper No. 99–1049, American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Marsh, A. (2018). Plowing with precision [Past Forward]. In IEEE spectrum, vol. 55, no. 3, pp. 56–56. https://doi.org/10.1109/MSPEC.2018.8302389.

  • Matese, A., Capraro, F., Primicerio, J., Gualato, G., Di Gennaro, S. F., & Agati, G. (2013). Mapping of vine vigor by UAV and anthocyanin content by a non-destructive fluorescence technique. In Precision agriculture’13 (pp. 201–208). Wageningen Academic Publishers, Wageningen.

  • Math, R. K. M., & Dharwadkar, N. V. (2018). “IoT Based Low-Cost Weather station and monitoring system for precision agriculture in India.” In 2nd international conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC)I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC), 2018 2nd international conference on, pp. 81–86. https://doi.org/10.1109/I-SMAC.2018.8653749.

  • Mathews, A. J., & Jensen, J. L. (2013). Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sensing, 5(5), 2164–2183.

    Article  ADS  Google Scholar 

  • Mathukia, R., Rathod, P., & Dadhania, N. (2014). Climate change adaptation: Real time nitrogen management in maize (Zea Mays L.) using leaf colour chart. Current World Environment, 9, 1028–1033. https://doi.org/10.12944/CWE.9.3.58

    Article  Google Scholar 

  • Meena, B. R., & Dudwal, B. L. (2021). Precision Farming; their tools and techniques. Just Agriculture Multi-Disciplinary e-Newsletter, 2(1), 01–11.

    Google Scholar 

  • Michels, G. J., Piccinni, G., Rush, C. M., & Fritts, D. A. (2000). Using infrared transducers to sense greenbug infestation in winter wheat. In 5th International conference on precision agriculture. St Paul, MN: CD‐ROM, American Society of Agronomy, Precision Agriculture Center, University of Minnesota.

  • Mirzakhaninafchi, H., Singh, M., Bector, V., Gupta, O. P., & Singh, R. (2021). Design and development of a variable rate applicator for real-time application of fertilizer. Sustainability, 13, 8694. https://doi.org/10.3390/su13168694

    Article  CAS  Google Scholar 

  • Mirzakhaninafchi, H., Singh, M., Dixit, A. K., Prakash, A., Sharda, S., Kaur, J., & Nafchi, A. M. (2022). Performance assessment of a sensor-based variable-rate real-time fertilizer applicator for rice crop. Sustainability, 14, 11209. https://doi.org/10.3390/su141811209

    Article  CAS  Google Scholar 

  • Mishra, A., Pant, P. K., Bhatt, P., Singh, P., & Gangola, P. (2019). Management of soil system using precision agriculture technology. Journal of Plant Development Sciences, 11(2), 73–78.

    Google Scholar 

  • Mohamed, H. H. (2016). Using a GPS tracker in operating and managing farm machinery stations. Misr Journal of Agricultural Engineering, 33(2), 365–382.

    Article  Google Scholar 

  • Mondal, P., Tewari, V. K., Rao, P. N., Verma, R. B., Basu, M. (2004). Scope of precision agriculture in India. In: Proceedings of international conference on emerging technologies in agricultural and food engineering, Kharagpur, India. PMS (Vol. 101, No. 6).

  • Mondal, P., & Basu, M. (2009). Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Progress in Natural Science, 19(2009), 659–666.

    Article  Google Scholar 

  • Morgan, C. L. S., Norman, J. M., Wolkowski, R. P., Lowery, B., Morgan, G. D., & Schuler, R. (2000). Two approaches to mapping plant available water: EM-38 measurements and inverse yield modeling. In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–13). American Society of Agronomy.

  • Mounzer, O. H., Vera, J., Tapia, L. M., García-Orellana, Y., Conejero, W., Abrisqueta, I., Ruiz-Sánchez, M. C., & Abrisqueta-García, J. M. (2008). Irrigation scheduling of peach trees (Prunus Persica L.) by continuous measurement of soil water status. Agrociencia, 42, 857–868.

    Google Scholar 

  • Mulla, D. J. (2013). Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358–371.

    Article  Google Scholar 

  • Myers, D. B., Kitchen, N. R., Sudduth, K. A., & Miles, R. J. (2000). Estimation of a soil productivity index on claypan soils using soil electrical conductivity. In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–12). American Society of Agronomy.

  • Naresh, P. K., Singh, S. P., Misra, A. K., Tomar, S. S., Kumar, P., Kumar, V., & Kumar, S. (2017). Evaluation of the laser leveled land leveling technology on crop yield and water user productivity in Western Uttar Pradesh. African Journal of Agriculture, 9(4), 473–478. https://doi.org/10.5897/AJAR12.1741

    Article  Google Scholar 

  • Nebiker, S., Annen, A., Scherrer, M., & Oesch, D. 2008. A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing. In Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 37(B1), pp. 1193–1200.

  • Neupane, J., & Guo, W. (2019). Agronomic basis and strategies for precision water management: A review. Agronomy, 9(2), 87. https://doi.org/10.3390/agronomy9020087

    Article  CAS  Google Scholar 

  • Newman, S. C., Hummel, J. W., & Sudduth, K. A. (1999). Soil penetration resistance with moisture correction. ASAE Paper No. 99–3028, American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Nex, F., Armenakis, C., Cramer, M., Cucci, D., Gerke, M., Honkavaara, E., Kukko, A., Persello, C., & Skaloud, J. (2022). UAV in the advent of the twenties: Where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 215–242. https://doi.org/10.1016/j.isprsjprs.2021.12.006

    Article  ADS  Google Scholar 

  • Nowatzki, J., Hofman, V., Disrud, L., & Nelson, K. (2019). GPS Applications in crop production. Geospatial Technology, available online at https://mapasyst.extension.org/gps-applications-in-crop-production/.

  • Padhiary, G. G., & Mishra, S. L. (2020). Agricultural sensors: A step towards smart agriculture. Just Agriculture Multi-Disciplinary e-News Letter, 1(2), 272–277.

    Google Scholar 

  • Pal, S. S., Jat, M. L., & SubbaRao, A. V. M. (2003). Laser land leveling for improving water productivity in rice-wheat system. PDCSR Newsletter.

  • Pampolino, M. F., Manguiat, I. J., Ramanathan, S., Gines, H. C., Tan, P. S., et al. (2007). Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agricultural Systems, 93(1–3), 1–24.

    Article  Google Scholar 

  • Pazhanivelan, S., Kannan, P., Christy Nirmala Mary, P., Subramanian, E., Jeyaraman, S., Nelson, A., Setiyono, T., Holecz, F., Barbieri, M., & Yadav, M. (2015). Rice crop monitoring and yield estimation through COSMO Skymed and TerraSAR-X: A SAR-based experience in India. In ISPRS: International archives of the photogrammetry, remote sensing and spatial information sciences. XL-7/W3. https://doi.org/10.5194/isprsarchives-XL-7-W3-85-2015.

  • Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. In D. L. Sparks (Ed.), Advances in agronomy, vol. 67, pp. 1–85.

  • Pölönen, I., Saari, H., Kaivosoja, J., Honkavaara, E., & Pesonen, L. (2013). Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV. In Remote sensing for agriculture, ecosystems, and hydrology XV (Vol. 8887, pp. 141–149). SPIE.

  • Rains, G. C., Wesley, P., Calvin, P. (2016). Soil sampling for precision management of crop production. UGA Extension Bulletin 1208.

  • Rao, J. V. (2017). Pest and weed detection and application of pesticide in agriculture field using multicopter. International Journal of Control Theory and Applications, 10(6), 605–610.

    Google Scholar 

  • Rawat, P. (2020). Smart agriculture through GPS technology. The GPS Time. https://www.thegpstime.com/how-gps-technology-in-agriculture-help-in-farming-practices/

  • Rejesus, R. M., & Hornbaker, R. H. (1999). Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agriculture, Ecosystems & Environment, 75(1–2), 41–53.

    Article  Google Scholar 

  • Rial, W. S., & Han, Y. J. (1999). Using complex permittivity to assess the volumetric water content of agronomic soil. ASAE Paper No. 99-3114, American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Runquist, S., Zhang, N., & Taylor, R. K. (2001). Development of a field-level geographic information system. Computers and Electronics in Agriculture, 31(2), 201–209. https://doi.org/10.1016/S0168-1699(00)00155-1

    Article  Google Scholar 

  • Ryu, C., Suguri, M., Iida, M., Umeda, M., & Lee, C. (2011). Integrating remote sensing and GIS for prediction of rice protein contents. Precision Agriculture, 2011(12), 378–394.

    Article  Google Scholar 

  • Sadler, E. J., Evans, R., Stone, K. C., & Camp, C. R. (2005). Opportunities for conservation with precision irrigation. Journal of Soil and Water Conservation, 60(6), 371–378.

    Google Scholar 

  • Saha, U. (2017). Global food production systems: The Need for embracing yield and quality. Appl Food Sci J., 1(1), 1–2.

    ADS  Google Scholar 

  • Sahoo, R. N., Ray, S. S., & Manjunath, K. R. (2015). Hyperspectral remote sensing of agriculture. Current Science, 108(5), 848–859.

    Google Scholar 

  • Sander, B. O., Samson, M., & Buresh, R. (2014). Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma, 235–236, 355–362. https://doi.org/10.1016/j.geoderma.2014.07.020

    Article  ADS  CAS  Google Scholar 

  • Santana-Fernández, J., Gómez-Gil, J., & del Pozo-San-Cirilo, L. (2010). Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology. Sensors, 10, 10435–10447.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Searcy, S. W., & Beck, A. D. (2000). Real time assessment of cotton plant height. In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–13). American Society of Agronomy.

  • Sedov, A. (2015). GPS Monitoring in Agriculture. 50 North. http://www.50northspatial.org/gps-monitoring-argiculure/

  • Serrano, J., Shahidian, S., Marques da Silva, J., Paixão, L., Carreira, E., Pereira, A., & Carvalho, M. (2020). Climate changes challenges to the management of Mediterranean Montado Ecosystem: Perspectives for use of precision agriculture Technologies. Agronomy, 10(2), 218. https://doi.org/10.3390/agronomy10020218

  • Sehy, U., Ruser, R., & Munch, J. C. (2003). Nitrous oxide fluxes from maize fields: Relationship to yield, site-specific fertilization, and soil conditions. Agriculture, Ecosystems & Environment, 99(1–3), 97–111.

    Article  CAS  Google Scholar 

  • Shamshiri, R., & Ismail, W. I. W. (2013). Exploring GPS data for operational analysis of farm machinery. Research Journal of Applied Sciences, Engineering and Technology, 5(12), 3281–3286.

    Article  Google Scholar 

  • Shannon, K., Ellis, C., & Hoette, G. (2002). Performance of “Low-Cost” GPS receivers for yield mapping. 2002 Chicago, IL July 28–31, 2002. https://doi.org/10.13031/2013.9152

  • Sharma, A., Singh, M., & Jasper, J. (2012). Investigations on tractor mounted N-sensor for wheat crop in India. In National conference on “Agro-informatics and precision agriculture” at international institute of information technology (IIIT), Hyderabad from 1–3 August 2012, pp. 137–141.

  • Sharma, A. (2018). Handheld crop sensor optimize fertilizer use; Monitor Crop Health. Cultivation. https://www.krishisewa.com/production-technology/910-trimble-agriculture-greenseeker-handheld-crop-sensor.html

  • Shibusawa, S., Anom, W. S. I. M., Sato, H., Sasao, A., Hirako, S., Otomo, A., & Blackmore, S. (2000). On-line real-time soil spectrophotometer. In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–13). American Society of Agronomy.

  • Shockley, J. M., Dillon, C. R., & Stombaugh, T. S. (2011). A whole farm analysis of the influence of auto-steer navigation on net returns, risk, and production practices. Journal of Agricultural and Applied Economics, 43(1), 57–75.

    Article  Google Scholar 

  • Sidhu, A. S., Kukal, S. S., & Hira, G. S. (2008). P.A.U Tensiometer: Chone Nu Pani laun Di Lahevand technique (Extension bulletin) released from Punjab Agricultural University, Ludhiana.

  • Singh, V. V., Chaudhuri, D., Pandey, M. M., Ganesan, S., Tiwari, R. (2004). CIAE tractor mounted pneumatic planter: A success story. Extension Bulletin No. CIAE/FIM/2004/42, Published by Coordinating Cell, AICRP on Farm Implements and Machinery, Central Institute of Agricultural Engineering, Bhopal.

  • Singh, M., Singh, B., Singh, Y., Kumar, R., Singh, T., Garg, S., Mahal, J. S., Pannu, C. J. S., Kalra & Sharma, A. (2011). Precision farming and its potential in punjab agriculture. Research Bulletin 04/2011, Directorate of Research, Punjab Agricultural University, Ludhiana.

  • Singh, A., Singh, S. N., Rao, A. K., & Sharma, M. L. (2012b). Enhancing sugarcane (Saccharum hybrid complex) productivity through modified trench method of planting in sub-tropical India. Indian Journal of Agricultural Sciences, 82, 692–696.

    Article  Google Scholar 

  • Singh, K., Prakash, A., Singh, M., Sharda, S., & Gupta, H. (2021). Relative performance of satellite based navigation systems for improving tractor productivity. Agricultural Research Journal, 58(5), 874–880. https://doi.org/10.5958/2395-146X.2021.00125.3

    Article  Google Scholar 

  • Singh, M., Kumar, M., Prakash, A., Sharma, K., & Mishra, P. K. (2018). Comparative Field performance of pneumatic planters for planting of maize crop. Agricultural Engineering Today, 42(3), 12–18.

    Google Scholar 

  • Singh, M., Singh, J., & Sharma, A. (2011a). Development of a batch type yield monitoring system for grain combine harvester. Journal of Agricultural Engineering, 48(4), 1–16.

    Google Scholar 

  • Singh, V., Singh, B., Singh, Y., Thind, H. S., Singh, G., Kaur, S., Kumar, A., & Vashistha, M. (2012a). Establishment of threshold leaf colour greenness for need-based fertilizer nitrogen management in irrigated wheat (Triticum aestivum L.) using leaf colour chart. Field Crops Research, 130, 109–119. https://doi.org/10.1016/j.fcr.2012.02.005

    Article  Google Scholar 

  • Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12, 3136. https://doi.org/10.3390/rs12193136

    Article  ADS  Google Scholar 

  • Solie, J. B., Thomason, W. E., Raun, W. R., Needham, D. E., Stone, M. L., Wan, J., Johnson, G. V., Washmon, C., Lukina, & E. V. (2000). In-season N fertilization using INSEY. In Proceedings of the 5th international conference on precision agriculture, Bloomington, MN, USA, July 16–19, 2000.

  • Srinivasan. (2001). Precision farming in Asia. Progress and prospects. Geospatial Analysis Center, Regional Science Institute.

    Google Scholar 

  • SRP. (2020). The SRP standard for sustainable rice cultivation (Version 2.1), Sustainable Rice Platform. http://www.sustainablerice.org.

  • Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76(3), 267–275. https://doi.org/10.1006/jaer.2000.0577

  • Stafford, J. V., & Bolam, H. C. (1998). Near-ground and aerial radiometery imaging for assess spatial variability in crop production. In Proceedings of the fourth international conference on precision agriculture. July 19–22, 1998. St. Paul, MN, USA.

  • Stafford, J., & Werner, A. (2003). Precision agriculture (1st ed., p. 783). Wageningen Academic Publishers.

    Book  Google Scholar 

  • Starr, J. L., & Paltineanu, I. C. (2002). Capacitance devices. In: Dane, J.H., Topp, G.C. (Eds.) Methods of soil analysis, Part 4, physical methods. SSSA, Madison, Wisconsin, pp. 463–474.

  • Sudduth, K. A., Birrell, S. J., & Krumpelman, M. J. (2000). Field evaluation of a corn population sensor. In Proceedings of the 5th international conference on precision agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000 (pp. 1–15). American Society of Agronomy.

  • Sudduth, K. A., Kitchen, N. R., Bollero, G. A., Bullock, D. G., & Wiebold, W. J. (2003). Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agronomy Journal, 95, 472–482.

    Article  Google Scholar 

  • Sujitha, E., & Shanmugasundaram, K. (2017). Irrigation management of greenhouse marigold using tensiometer: Effects on yield and water use efficiency. International Journal of Plant & Soil Science, 19(3), 1–9.

    Article  Google Scholar 

  • Sun, Y., Wang, M., & Zhang, N., (1999). Measuring soil water content using the principle of standing-wave ratio. In ASAE 1999 Annual Meeting, Paper (No. 997063).

  • Sun, Y., Ren, S., Ren, T., & Minasny, B. (2010). A combined frequency domain and tensiometer sensor for determining soil water characteristic curves. Soil Science Society of America Journal, 74, 492–494. https://doi.org/10.2136/sssaj2009.0047N

    Article  ADS  CAS  Google Scholar 

  • Swain, D., Friend, M., Bishop-Hurley, G. J., Handcock, R., & Wark, T. (2011). Tracking livestock using global positioning systems: Are we still lost? Anim. Prod. Sci., 51, 167–175. https://doi.org/10.1071/an10255

    Article  Google Scholar 

  • Swain, K. C., & Singha, C. (2018). Mapping of agriculture farms using GPS and GIS technique for precision farming. International Journal of Agricultural Engineering, 1(2), 269–275. https://doi.org/10.15740/HAS/IJAE/11.2/269-275

    Article  Google Scholar 

  • Swasthik, N., Puneeth, B. R., & Megha, M. (2019). GPS/GIS mapping of farmer land records. International Journal of Innovative Science and Research Technology, 4(5), 373–377.

    Google Scholar 

  • Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730.

    Article  Google Scholar 

  • Thai, C. N., Evans, M. D., & Greene, G. C. (1999). Integration of a personal liquid crystal monitor to a field spectral imaging system. ASAE paper (No. 99–3053), American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Thuilot, B., Cariou, C., Martinet, P., & Berducat, M. (2002). Automatic guidance of a farm tractor relying on a single CP-DGPS. Autonomous Robots, 13, 53–71.

    Article  Google Scholar 

  • Tian, L. F., Reid, J., & Hummel, J. (2000). Development of a precision sprayer for site-specific weed management. Transactions of the American Society of Agricultural Engineers, 10(13031/2013), 13269.

    Google Scholar 

  • Triantafyllou, A., Tsouros, D. C., Sarigiannidis, P., & Bibi, S. (2019). An architecture model for smart farming. In 2019 15th international conference on distributed computing in sensor systems (DCOSS) (pp. 385–392). IEEE. https://doi.org/10.1109/DCOSS.2019.00081.

  • Tripathy, R., Chaudhari, K. N., Mukherjee, J., Ray, S. S., Patel, N. K., Panigrahy, S., & Parihar, J. S. (2013). Forecasting wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs. Remote Sensing Letters, 4(1), 19–28. https://doi.org/10.1080/2150704X.2012.683117

    Article  Google Scholar 

  • Ünal, İ. (2020). Integration of ZigBee based GPS receiver to CAN network for precision farming applications. Peer-to-Peer Networking and Applications, 13, 1394–1405. https://doi.org/10.1007/s12083-020-00897-3

    Article  Google Scholar 

  • Van Evert, F. K., Gaitán-Cremaschi, D., Fountas, S., & Kempenaar, C. (2017). Can precision agriculture increase the profitability and sustainability of the production of potatoes and olives? Sustainability, 9(10), 1863.

    Article  Google Scholar 

  • Vatsanidou, A., Nanos, G. D., Fountas, S., Baras, J., Castrignano, A., & Gemtos, T. A. (2017). Nitrogen replenishment using variable rate application technique in a small hand-harvested pear orchard. Spanish Journal of Agricultural Research, 15, e0209.

    Article  Google Scholar 

  • Viana, L. D. A., Tomaz, D. C., Martins, R. N., Rosas, J. T. F., Santos, F. F. L. D., & Portes, M. F. (2019). Optical sensors for precision agriculture: An outlook. Journal of Experimental Agriculture International, 35(2), 1–9. https://doi.org/10.9734/jeai/2019/v35i230203

    Article  Google Scholar 

  • Wadhwa, T. (2022). GPS in agriculture: How are farmers modernizing with its adoption? LocoNav, available at GPS in Agriculture: The Next Big Thing for Farmers? (loconav.com).

  • Wang, N., Zhang, N., Dowell, F. E., Sun, Y., & Peterson, D. E. (2001). Design of an optical weed sensor using plant spectral characteristics. Transactions of the ASAE, 44(2), 409–419.

    Article  Google Scholar 

  • Weiss, M., Jacob, F., & Duveillerc, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402.

    Article  Google Scholar 

  • Whelan, B. M., & McBratney, A. B. (2000). The “Null Hypothesis” of precision agriculture management. Precision Agriculture, 2(3), 265–279.

    Article  Google Scholar 

  • Woydziak, N. (2013). GPS soil sampling: The basics exposed. Cropquest. https://www.cropquest.com/gps-soil-sampling/.

  • Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Hindawi Journal of Sensors, 2017, 17. https://doi.org/10.1155/2017/1353691

    Article  CAS  Google Scholar 

  • Yao, L., Li, L., Zhang, M., & Minzan, L. (2005). Automatic guidance of agricultural vehicles based on global positioning system. In IFIP Int. Conf. on Artif Intell Appl Innovations. Springer, Boston, MA, pp. 617–624

  • Yasir, S. H., Liao, Q., Yu, J., & He, D. (2012). Design and test of a pneumatic precision metering device for wheat. Agric EngInt: CIGR Journal, 14(1), 16–25.

    Google Scholar 

  • Yin, J., Gao, W., Zhang, Z., Mai, Y., Luan, A., Jin, H., & Jin, Q. (2020). Batch microfabrication of highly integrated silicon-based electrochemical sensor and performance evaluation via nitrite water contaminant determination. Electrochimica Acta, 335, 135660. https://doi.org/10.1016/j.electacta.2020.135660

    Article  CAS  Google Scholar 

  • Yule, I. J., Kohnen, G., & Nowak, M. (1999). A tractor performance monitor with DGPS capability. Computers and Electronics in Agriculture, 23(2), 155–174. https://doi.org/10.1016/S0168-1699(99)00029-0

    Article  Google Scholar 

  • Zhang, X., Wang, Y., & Zhao, H. (2004). Application and study on GPS technology for irrigation system. 35. 102–105+123.

  • Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943.

    Article  Google Scholar 

  • Zhang, N., Sun, Y., Wang, N., Wang, M., & Loughin, T. (2000). Effectiveness of a polarized laser light for measuring soil moisture content. Transactions of the ASAE, 43(6), 1963–1968.

    Article  Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture: A worldwide overview. Computers and Electronics in Agriculture, 36(2–3), 113–132. https://doi.org/10.1016/S0168-1699(02)00096-0

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Sharma.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Prakash, A., Bhambota, S. et al. Investigations of precision agriculture technologies with application to developing countries. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04572-y

Keywords