Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A comparative study on generating simulated Landsat NDVI images using data fusion and regression method—the case of the Korean Peninsula

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Landsat optical images have enough spatial and spectral resolution to analyze vegetation growth characteristics. But, the clouds and water vapor degrade the image quality quite often, which limits the availability of usable images for the time series vegetation vitality measurement. To overcome this shortcoming, simulated images are used as an alternative. In this study, weighted average method, spatial and temporal adaptive reflectance fusion model (STARFM) method, and multilinear regression analysis method have been tested to produce simulated Landsat normalized difference vegetation index (NDVI) images of the Korean Peninsula. The test results showed that the weighted average method produced the images most similar to the actual images, provided that the images were available within 1 month before and after the target date. The STARFM method gives good results when the input image date is close to the target date. Careful regional and seasonal consideration is required in selecting input images. During summer season, due to clouds, it is very difficult to get the images close enough to the target date. Multilinear regression analysis gives meaningful results even when the input image date is not so close to the target date. Average R 2 values for weighted average method, STARFM, and multilinear regression analysis were 0.741, 0.70, and 0.61, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acerbi-Junior, F. W., Clevers, J. G. P. W., & Schaepman, M. E. (2006). The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian savanna. International Journal of Applied Earth Observation and Geoinformation, 8(4), 278–288. doi:10.1016/j.jag.2006.01.001x.

    Article  Google Scholar 

  • Buma, B. (2012). Evaluating the utility and seasonality of NDVI values for assessing post-disturbance recovery in a subalpine forest. Environmental Monitoring and Assessment, 184(4), 3849–3860. doi:10.1007/s10661-011-2228-y.

    Article  CAS  Google Scholar 

  • Choi, G. Y., Kwon, W. T., & Robinson, D. A. (2006). Seasonal onset and duration in South Korea. Journal of the Korean Geographic Society, 41(1), 435–456.

    Google Scholar 

  • Fuller, D. O. (1998). Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987–1993. International Journal of Remote Sensing, 19(10), 2013–2018. doi:10.1080/014311698215135.

    Article  Google Scholar 

  • Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2207–2218. doi:10.1109/TGRS.2006.872081.

    Article  Google Scholar 

  • Garty, J., Tamir, O., Hassid, I., Eshel, A., Cohen, Y., Karnieli, A., & Orlovsky, L. (2001). Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. Journal of Environmental Quality, 30(3), 884–893. doi:10.2134/jeq2001.303884x.

    Article  CAS  Google Scholar 

  • Giannico, C. (2007). Remote sensing of vegetation in the Calabrian region. Acta Astronautica, 60(2), 119–131. doi:10.1016/j.actaastro.2006.07.003.

    Article  Google Scholar 

  • Hansen, M. C., Roy, D. P., Lindquist, E., Adusei, B., Justice, C. O., & Altstatt, A. (2008). A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment, 112(5), 2495–2513. doi:10.1016/j.rse.2007.11.012.

    Article  Google Scholar 

  • Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J. G., Gao, F., & White, J. C. (2009a). A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113(8), 1613–1627. doi:10.1016/j.rse.2009.03.007.

    Article  Google Scholar 

  • Hilker, T., Wulder, M. A., Coops, N. C., Seitz, N., White, J. C., Gao, F., Masek, J. G., & Stenhouse, G. (2009b). Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sensing of Environment, 113(9), 1988–1999. doi:10.1016/j.rse.2009.05.011.

    Article  Google Scholar 

  • Hou, X., Li, M., Gao, M., Yu, L., & Bi, X. (2013). Spatial-temporal dynamics of NDVI and Chl-a concentration from 1998 to 2009 in the east coastal zone of China: integrating terrestrial and oceanic components. Environmental Monitoring and Assessment, 185(1), 267–277. doi:10.1007/s10661-012-2551-y.

    Article  Google Scholar 

  • Huete, A., Justice, C., & Leeuwen, W. V. (1999). MODIS vegetation index (MOD13): algorithm theoretical basis document, version 3. 1–133. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf.

  • Huete, A. R., & Liu, H. Q. (1994). An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Transactions on Geoscience and Remote Sensing, 32(4), 897–905. doi:10.1109/36.298018.

    Article  Google Scholar 

  • Jensen J. R. (2003). Remote sensing of the environment: an earth resources perspective. In Prentice Hall Series in Geographic information science (pp. 381–395). New Jersey: Pearson Prentice Hall.

  • Jones, K. B., Riitters, K. H., Wickham, J. D., Tankersley Jr., R. D., O’Neill, R. V., Chaloud, D. J., Smith, E. R., & Neale, A. C. (1997). An ecological assessment of the United States mid-Atlantic region: a landscape atlas. United States Environmental Protection Agency. Office of Research and Development (p. 103). Washington: EPA.

    Google Scholar 

  • Ke, Y., Im, J., Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 164, 298–313.

    Article  Google Scholar 

  • Korea meteorological administration and Korean meteorological society. (2015). Glossary of atmospheric science. Korea: Sigmapress.

    Google Scholar 

  • La, H. P., Eo, Y. D., Lee, S. B., Park, W. Y., & Koo, J. H. (2015). Image simulation from multitemporal Landsat images. GIScience and Remote Sensing, 52(5), 586–608. doi:10.1080/15481603.2015.1062676.

    Google Scholar 

  • Li, X., & Yeh, A. G. (2004). Multitemporal SAR images for monitoring cultivation systems using case-based reasoning. Remote Sensing of Environment, 90(4), 524–534.

    Article  Google Scholar 

  • Morawitz, D. F., Blewett, T. M., Cohen, A., & Alberti, M. (2006). Using NDVI to assess vegetative land cover change in central Puget Sound. Environmental Monitoring and Assessment, 114(1–3), 85–106. doi:10.1007/s10661-006-1679-z.

    Article  Google Scholar 

  • Ramsey, R. D., Falconer, A., & Jensen, J. R. (1995). The relationship between NOAA-AVHRR NDVI and ecoregions in Utah. Remote Sensing of Environment, 53(3), 188–198. doi:10.1016/0034-4257(95)00019-W.

    Article  Google Scholar 

  • Rhee, J., Im, J., & Carbone, G. J. (2010). Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment, 114(12), 2875–2887. doi:10.1016/j.rse.2010.07.005.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1, 48–62.

  • Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., & Lindquist, E. (2008). Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112(6), 3112–3130. doi:10.1016/j.rse.2008.03.009.

    Article  Google Scholar 

  • Seong, J. C. (2000). Characteristics and application of large-area multi-temporal remote sensing data. Journal of the Korean Society of Remote Sensing, 16(1), 1–11.

    Google Scholar 

  • Sonnenschein, R., Kuemmerle, T., Udelhoven, T., Stellmes, M., & Hostert, P. (2011). Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sensing of Environment, 115(6), 1408–1420. doi:10.1016/j.rse.2011.01.021.

    Article  Google Scholar 

  • Tan, K. C., San Lim, H., MatJafri, M. Z., & Abdullah, K. (2012). A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery. Environmental Monitoring and Assessment, 184(6), 3813–3829. doi:10.1007/s10661-011-2226-0.

    Article  Google Scholar 

  • Torrupt, C., & Rasmussen, M. S. (2004). Mapping long-term change in savannah crop productivity in Senegal through trend analysis of time series of remote sensing data. Agriculture, Ecosystems & Environment, 103(3), 545–560. doi:10.1016/j.agee.2003.11.009.

    Article  Google Scholar 

  • Walker, J. J., De Beurs, K. M., Wynne, R. H., & Gao, F. (2012). Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sensing of Environment, 117, 381–393. doi:10.1016/j.rse.2011.10.014.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [NRF-2013R1A1A2007582]. And, this work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (Project No. 2015-02-02-040)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Dam Eo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.H., Lee, S.B., Eo, Y.D. et al. A comparative study on generating simulated Landsat NDVI images using data fusion and regression method—the case of the Korean Peninsula. Environ Monit Assess 189, 333 (2017). https://doi.org/10.1007/s10661-017-6034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6034-z

Keywords

Navigation