Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Supply chain network competition among blood service organizations: a Generalized Nash Equilibrium framework

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present a Generalized Nash Equilibrium model of supply chain network competition among blood service organizations which compete not only for blood donors but also for business from hospitals and medical centers. The model incorporates not only link capacities and associated arc multipliers to capture perishability, but also bounds on the number of donors in regions as well as lower and upper bounds on the demands at the demand points in order to ensure needed amounts for surgeries, treatments, etc., while reducing wastage. The concept of a variational equilibrium is utilized to transform the problem into a variational inequality problem, and alternative formulations are given. A Lagrange analysis yields economic insights. The proposed algorithmic procedure is then applied to a series of numerical examples in order to illustrate the impacts of disruptions in the form of a reduction on the number of donors as well as that of decreases in capacities of critical links such as testing and processing on RBC prices, demands, net revenues of the blood service organizations, and their overall utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aleccia, J. (2017). As loyal blood donors age, industry is out for young blood. USA Today, September 24. https://www.usatoday.com/story/news/health/2017/09/24/loyal-blood-donors-age-industry-out-young-blood/683714001/.

  • American Association of Blood Banks. (2017). Blood donor screening and testing. http://www.aabb.org/advocacy/regulatorygovernment/donoreligibility/Pages/default.aspx.

  • American Red Cross. (2017). Blood facts and statistics. http://www.redcrossblood.org/learn-about-blood/blood-facts-and-statistics.

  • Andreoni, J. (1990). Impure altruism and donations to public goods: A theory of warm-glow giving. The Economic Journal, 10(401), 464–477.

    Article  Google Scholar 

  • Ayer, T., Zhang, C., Zeng, C., White III, C. C., & Roshan Joseph, V. (2018). Analysis and improvement of blood collection operations. Manufacturing & Service Operations Management. https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1287_msom.2017.0693&d=DwIFAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=r2aSgYn6PHMQXXmeBiKsnvfFG9T9U5fmdQ67xEVmgo0&m=-PkoJPrcskeu_Hcs5S6qoMaHcbIjET_LgRESKH8fiKo&s=FcWg2aZMfJmgvaAkVbqBCQTx_PHUznvKtnyKP_je_dU&e=.

  • Barbagallo, A., Daniele, P., & Maugeri, A. (2012). Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula. Nonlinear Analysis, Theory, Methods and Applications, 75(3), 1104–1123.

    Article  Google Scholar 

  • Barber, A. (2013). EMMC switches blood supplier from American Red Cross to Puget Sound Blood Center. Bangor Daily News, October 7. http://bangordailynews.com/2013/10/07/news/bangor/emmc-switches-blood-supplier-from-american-red-cross-to-puget-sound-blood-center/?ref=relatedBox.

  • Beliën, J., & Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1–16.

    Article  Google Scholar 

  • Bensoussan, A. (1974). Points de Nash dans le cas de fonctionelles quadratiques et jeux differentiels lineaires a N personnes. SIAM Journal on Control, 12, 460–499.

    Article  Google Scholar 

  • Bose, B. (2015). Effects of nonprofit competition on charitable donations. Working paper, University of Washington, Seattle, WA.

  • Brantley, M. (2017). The blood business: A supplier change in Central Arkansas. Arkansas Times, October 11. https://www.arktimes.com/ArkansasBlog/archives/2017/10/11/the-blood-business-a-supplier-change-in-central-arkansas.

  • Carlyle, E. (2012). The guys who trade your blood for profit. Forbes, June 27. https://www.forbes.com/sites/erincarlyle/2012/06/27/blood-money-the-guys-who-trade-your-blood-for-profit/#4f0b523a282e.

  • Caruso, V., & Daniele, P. (2018). A network model for minimizing the total organ transplant costs. European Journal of Operational Research, 266(2), 652–662.

    Article  Google Scholar 

  • Castaneda, M. A., Garen, J., & Thornton, J. (2008). Competition, contractibility, and the market for donors to nonprofits. Journal of Law, Economics, and Organization, 24(1), 215–246.

    Article  Google Scholar 

  • Chazan, D., & Gal, S. (1977). A Markovian model for a perishable product inventory. Management Science, 23(5), 512–521.

    Article  Google Scholar 

  • Choi, K. S., Dai, J. G., & Song, J. S. (2004). On measuring supplier performance under vendor-managed-inventory programs in capacitated supply chains. Manufacturing & Service Operations Management, 6(1), 53–72.

    Article  Google Scholar 

  • Cohen, M. A., & Pierskalla, W. P. (1979). Target inventory levels for a hospital blood bank or a decentralized regional blood banking system. Transfusion, 19(4), 444–454.

    Article  Google Scholar 

  • Colajanni, G., Daniele, P., Giuffrè, S., & Nagurney, A. (2018). Cybersecurity investments with nonlinear budget constraints and conservation laws: Variational equilibrium, marginal expected utilities, and Lagrange multipliers. International Transactions in Operational Research, 25(5), 1443–1464.

    Article  Google Scholar 

  • Daniele, P. (2001). Variational inequalities for static equilibrium market. In F. Giannessi, A. Maugeri, & P. M. Pardalos (Eds.), Lagrangean Function and Duality, in Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models (pp. 43–58). Norwell, MA: Kluwer Academic Publishers.

  • Daniele, P., & Giuffrè, S. (2015). Random variational inequalities and the random traffic equilibrium problem. Journal of Optimization Theory and Applications, 167(1), 363–381.

    Article  Google Scholar 

  • Delen, D., Erraguntla, M., & Mayer, R. J. (2011). Better management of blood supply-chain using GIS-based analytics. Annals of Operations Research, 185, 181–193.

    Article  Google Scholar 

  • Dupuis, P., & Nagurney, A. (1993). Dynamical systems and variational inequalities. Annals of Operations Research, 44, 9–42.

    Article  Google Scholar 

  • Duan, Q., & Liao, T. W. (2014). Optimization of blood supply chain with shortened shelf lives and ABO compatibility. International Journal of Production Economics, 153, 113–129.

    Article  Google Scholar 

  • El-Amine, H., Bish, E. K., & Bish, D. R. (2017). Robust postdonation blood screening under prevalence rate uncertainty. Operations Research, 66(1), 1–17.

    Article  Google Scholar 

  • Evans, R., & Ferguson, E. (2013). Defining and measuring blood donor altruism: A theoretical approach from biology, economics and psychology. Vox Sanguinis, 106(2), 118–26.

    Article  Google Scholar 

  • Fahimnia, B., Jabbarzadeh, A., Ghavamifar, A., & Bell, M. (2017). Supply chain design for efficient and effective blood supply in disasters. International Journal of Production Economics, 183, 700–709.

    Article  Google Scholar 

  • Fischer, A., Herrich, M., & Schonefeld, K. (2014). Generalized Nash equilibrium problems—Recent advances and challenges. Pesquisa Operacional, 34(3), 521–558.

    Article  Google Scholar 

  • Fortsch, S. M., & Khapalova, E. A. (2016). Reducing uncertainty in demand for blood. Operations Research for Health Care, 9, 16–28.

    Article  Google Scholar 

  • Gabay, D., & Moulin, H. (1980). On the uniqueness and stability of Nash equilibria in noncooperative games. In A. Bensoussan, P. Kleindorfer, & C. S. Tapiero (Eds.), Applied Stochastic Control of Econometrics and Management Science (pp. 271–294). Amsterdam: North-Holland.

    Google Scholar 

  • Gavirneni, S. (2002). Information flows in capacitated supply chains with fixed ordering costs. Management Science, 48(5), 644–651.

    Article  Google Scholar 

  • Gillespie, T. W., & Hillyer, C. D. (2002). Blood donors and factors impacting the blood donation decision. Transfusion Medicine Reviews, 16(2), 115–130.

    Article  Google Scholar 

  • Goh, M., Lim, J. Y., & Meng, F. (2007). A stochastic model for risk management in global supply chain networks. European Journal of Operational Research, 182(1), 164–173.

    Article  Google Scholar 

  • Gunpinar, S., & Centeno, G. (2015). Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers and Operation Research, 54, 129–141.

    Article  Google Scholar 

  • Hart, S. (2011). Rival blood banks vie for donors in Sonoma County. The Press Democrat, August 19. http://www.pressdemocrat.com/news/2290362-181/rival-blood-banks-vie-for.

  • Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Savelsberg, M. W. P. (2009). Delivery strategies for blood product supplies. OR Spectrum, 31(4), 707–725.

    Article  Google Scholar 

  • Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2008). Integrated safety stock management for multi-stage supply chains under production capacity constraints. Computers and Chemical Engineering, 32(11), 2570–2581.

    Article  Google Scholar 

  • Katsaliaki, K., & Brailsford, S. C. (2007). Using simulation to improve the blood supply chain. Journal of the Operational Research Society, 58(2), 219–227.

    Article  Google Scholar 

  • Kopach, R. (2008). Tutorial on constructing a red blood cell inventory management system with two demand rates. European Journal of Operations Research, 185(3), 1051–1059.

    Article  Google Scholar 

  • Kulkarni, A. A., & Shanbhag, U. V. (2012). On the variational equilibrium as a refinement of the generalized Nash equilibrium. Automatica, 48, 45–55.

    Article  Google Scholar 

  • Lee, Y. H., & Kim, S. H. (2002). Production and distribution planning in supply chain considering capacity constraints. Computers and Industrial Engineering, 43(1), 169–190.

    Article  Google Scholar 

  • Luna, J. P. (2013). Decomposition and approximation methods for variational inequalities, with application to deterministic and stochastic energy markets. Ph.D. Thesis, Instituto Nacional de Matematica Pure e Aplicada, Rio de Janeiro, Brazil.

  • Masoumi, A. H., Yu, M., & Nagurney, A. (2017). Mergers and acquisitions in blood banking systems: A supply chain network approach. International Journal of Production Economics, 193, 406–421.

    Article  Google Scholar 

  • Mellström, C., & Johannesson, M. (2008). Crowding out in blood donation: Was Titmuss right? Journal of the European Economic Association, 6(4), 845–863.

    Article  Google Scholar 

  • Merola, M. (2017). Phone interview with the Manager of Transfusion Medicine. Inpatient Phlebotomy at Baystate Health, June 7.

  • Muggy, L., & Heier Stamm, J. L. (2014). Game theory applications in humanitarian operations: Review. Journal of Humanitarian Logistics and Supply Chain Management, 4(1), 4–23.

    Article  Google Scholar 

  • Mulcahy, A. W., Kapinos, K., Briscombe, B., Uscher-Pines, L., Chaturvedi, R., Case, S. R., et al. (2016). Toward a sustainable blood supply in the United States. Santa Monica, CA: RAND Corporation.

    Google Scholar 

  • Nagurney, A. (1999). Network economics: A variational inequality approach (Second and revised ed.). Dordrecht: Kluwer Academic Publisher.

    Book  Google Scholar 

  • Nagurney, A. (2006). Supply chain network economics: Dynamics of prices, flows, and profits. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Nagurney, A. (2017). Uncertainty in blood supply chains creating challenges for industry. The Conversation, January 8. https://theconversation.com/uncertainty-in-blood-supply-chains-creating-challenges-for-industry-70316.

  • Nagurney, A. (2018). A multitiered supply chain network equilibrium model for disaster relief with capacitated freight service provision. In I. S. Kotsireas, A. Nagurney, & P. M. Pardalos (Eds.), Dynamics of disasters: Algorithmic approaches and applications. Bern: Springer International Publishers.

    Google Scholar 

  • Nagurney, A., Alvarez Flores, E., & Soylu, C. (2016). A generalized Nash equilibrium model for post-disaster humanitarian relief. Transportation Research E, 95, 1–18.

    Article  Google Scholar 

  • Nagurney, A., Daniele, P., Alvarez Flores, E., & Caruso, E. (2017). Variational equilibrium for humanitarian organizations in disaster relief: Effective product delivery under competition for financial funds. In I. S. Kotsireas, A. Nagurney, & P. M. Pardalos (Eds.), Dynamics of disasters: Algorithmic approaches and applications. Bern: Springer International Publishers.

  • Nagurney, A., & Dutta, P. (2018). Competition for blood donations. Omega (in press). https://doi.org/10.1016/j.omega.2018.06.001

  • Nagurney, A., & Li, D. (2016). Competing on supply chain quality: A network economics perspective. Bern: Springer International Publishing.

    Book  Google Scholar 

  • Nagurney, A., & Li, K. (2017). Hospital competition in prices and quality: A variational inequality framework. Operations Research for Health Care, 15, 91–101.

    Article  Google Scholar 

  • Nagurney, A., Masoumi, A., & Yu, M. (2012). Supply chain network operations management of a blood banking system with cost and risk minimization. Computational Management Science, 9(2), 205–231.

    Article  Google Scholar 

  • Nagurney, A., Yu, M., & Besik, D. (2017). Supply chain network capacity competition with outsourcing: A variational equilibrium network framework. Journal of Global Optimization, 69(1), 231–254.

    Article  Google Scholar 

  • Nagurney, A., Yu, M., Masoumi, A. H., & Nagurney, L. S. (2013). Networks against time: Supply chain analytics for perishable products. New York: Springer.

    Book  Google Scholar 

  • Nagurney, A., & Zhang, D. (1996). Projected dynamical systems and variational inequalities with applications. Norwell, MA: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30(4), 680–708.

    Article  Google Scholar 

  • Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, USA, 36, 48–49.

    Article  Google Scholar 

  • Nash, J. F. (1951). Noncooperative games. Annals of Mathematics, 54, 286–298.

    Article  Google Scholar 

  • Ortmann, A. (1996). Modem economic theory and the study of nonprofit organizations: Why the twain shall meet. Nonprofit and Voluntary Sector Quarterly, 25(4), 470–484.

    Article  Google Scholar 

  • Osorio, A. F., Brailsford, S. C., & Smith, H. K. (2015). A structured review of quantitative models in the blood supply chain: A taxonomic framework for decision-making. International Journal of Production Research, 53(24), 7191–7212.

    Article  Google Scholar 

  • Pierskalla, W. P. (2005). Supply chain management of blood banks. In M. L. Brandeau, F. Sainfort, & W. P. Pierskalla (Eds.), Operations research and health care (pp. 103–145). New York: Springer Business Science Media.

    Chapter  Google Scholar 

  • Ramezanian, R., & Behboodi, Z. (2017). Blood supply chain network design under uncertainties in supply and demand considering social aspects. Transportation Research E, 104, 69–82.

    Article  Google Scholar 

  • Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, 33, 520–534.

    Article  Google Scholar 

  • Rytilä, J. S., & Spens, K. M. (2006). Using simulation to increase efficiency in blood supply chains. Management Research News, 29(12), 801–819.

    Article  Google Scholar 

  • Salehi, F., Mahootchi, M., & Husseini, S. M. M. (2017). Developing a robust stochastic model for designing a blood supply chain network in a crisis: A possible earthquake in Tehran. Annals of Operations Research,. https://doi.org/10.1007/s10479-017-2533-0.

    Article  Google Scholar 

  • Sarhangian, V., Abouee-Mehrizi, H., Baron, O., & Berman, O. (2017). Threshold-based allocation policies for inventory management of red blood cells. Manufacturing & Service Operations Management, 20(2), 347–362.

    Article  Google Scholar 

  • Saxton, G. D., & Zhuang, J. (2013). A game-theoretic model of disclosure-donation interactions in the market for charitable contributions. Journal of Applied Communication Research, 41(1), 40–63.

    Article  Google Scholar 

  • Schreiber, G. B., Schlumpf, K. S., Glynn, S. A., Wright, D. J., Tu, Y. L., King, M. R., et al. (2006). Convenience, the bane of our existence, and other barriers to donating. Transfusion, 46, 545–553.

    Article  Google Scholar 

  • Schwartz, M. (2012). The business of blood. Richmond BizSense, March 22. http://richmondbizsense.com/2012/03/22/the-business-of-blood/.

  • Shaz, B. H., James, A. B., Hillyer, K. L., Schreiber, G. B., & Hillyer, C. D. (2011). Demographic patterns of blood donors and donations in a large metropolitan area. Journal of the National Medical Association, 103(4), 351–357.

    Article  Google Scholar 

  • Smith, B. P. (2011). Blood banks’ feud could affect area hospitals. Sarasota Herald-.Tribune, July 16. http://www.heraldtribune.com/news/20110716/blood-banks-feud-could-affect-area-hospitals.

  • Smith, B. P. (2012). Sarasota blood bank hopes state will stop rivals’ merger. Sarasota Herald-Tribune, January 8. http://health.heraldtribune.com/2012/01/08/sarasota-blood-bank-hopes-state-will-stop-rivals-merger/.

  • Snyder, J. (2001). Blood-collection is competitive business. Deseret News, October 14. https://www.deseretnews.com/article/869016/Blood-collection-is-competitive-business.html.

  • Stone, J. (2015). The battle for blood: Mission Health changes blood supplier. Smoky Mountain News, February 18. http://www.smokymountainnews.com/news/item/15097-the-battle-for-blood-mission-health-changes-blood-supplier.

  • Toyasaki, F., Daniele, P., & Wakolbinger, T. (2014). A variational inequality formulation of equilibrium models for end-of-life products with nonlinear constraints. European Journal of Operational Research, 236(1), 340–350.

    Article  Google Scholar 

  • Tracy, D. (2010). Blood is big business: Why does it cost so much? Orlando Sentinel, April 5. http://articles.orlandosentinel.com/2010-04-05/news/os-blood-cost-anne-chinoda-20100405_1_blood-is-big-business-community-blood-centers-donors.

  • Tuckman, H. P. (1998). Competition, commercialization, and the evolution of nonprofit organizational structures. Journal of Policy Analysis and Management, 17(2), 175–194.

    Article  Google Scholar 

  • von Heusinger, A. (2009). Numerical methods for the solution of the generalized Nash equilibrium problem. Ph.D. Dissertation, University of Wurtburg, Germany.

  • Wald, M. L. (2014). Blood industry shrinks as transfusions decline. The New York Times, August 22. https://www.nytimes.com/2014/08/23/business/blood-industry-hurt-by-surplus.html.

  • Wang, K. M., & Ma, Z. J. (2015). Age-based policy for blood transshipment during blood shortage. Transportation Research Part E: Logistics and Transportation Review, 80, 166–183.

    Article  Google Scholar 

  • Wellis, D. (2017). Phone interview with the Chief Executive Officer of San Diego Blood Bank, April 20.

  • Wilson, R. (2013). The Northeast is getting older; and it’s going to cost them. The Washington Post, September 12. https://www.washingtonpost.com/blogs/govbeat/wp/2013/09/12/the-northeast-is-getting-older-and-its-going-to-cost-them/.

  • World Health Organization. (2017). Blood safety and availability: Fact sheet. June. http://www.who.int/mediacentre/factsheets/fs279/en/.

  • Yuan, S., Hoffman, M., Lu, Q., Goldfinger, D., & Ziman, A. (2011). Motivating factors and deterrents for blood donation among donors at a university campus-based collection center. Transfusion, 51(11), 2438–2444.

    Article  Google Scholar 

  • Zhuang, J., Saxton, G. D., & Wu, H. (2011). Publicity vs. impact in nonprofit disclosures and donor preferences: A sequential game with one nonprofit organization and N donors. Annals of Operations Research, 221(1), 469–91.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful conversations with Dr. Louis Katz, Michael Merola, Dr. David Wellis, Beau Tompkins and Professor Amir H. Masoumi. The authors also thank the anonymous reviewer and the editor for taking the time to read the paper. The first author also acknowledges support from the Radcliffe Institute for Advanced Study at Harvard University, where she was a Summer Fellow in 2018, and from the John F. Smith Memorial Foundation at the University of Massachusetts Amherst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Nagurney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagurney, A., Dutta, P. Supply chain network competition among blood service organizations: a Generalized Nash Equilibrium framework. Ann Oper Res 275, 551–586 (2019). https://doi.org/10.1007/s10479-018-3029-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3029-2

Keywords

Navigation