Abstract
The literature on portfolio selection mostly concentrates on computational analysis rather than on modelling efforts. In response, this paper provides a comprehensive literature review of multiple objective deterministic and stochastic programming models for the portfolio selection problem. First, we summarize different concepts related to portfolio selection theory, including pricing models and portfolio risk measures. Second, we report the mathematical models that are generally used to solve deterministic and stochastic multiple objective programming problems. Finally, we present how these models can be used to solve the portfolio selection problem.
Similar content being viewed by others
References
Abdelaziz, F. B. (2012). Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1), 1–16.
Abdelaziz, F. B., Aouni, B., & El Fayedh, R. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177, 1811–1821.
Abdelaziz, F. B., El Fayedh, R., & Rao, A. (2009). A discrete stochastic goal program for portfolio selection: The case of United Arab Emirates equity market. INFOR, 47(1), 1–5.
Abdelaziz, F. B., & Masmoudi, M. (2014). A multiple objective stochastic portfolio selection problem with random Beta. International Transactions in Operational Research, 21(6), 919–933.
Abdelaziz, F. B., & Masri, H. (2010). A compromise solution for the multiobjective stochastic linear programming under partial uncertainty. European Journal of Operational Research, 202(1), 55–59.
Al-Shammari, M., & Masri, H. (2015). Multiple criteria decision making in finance, insurance and investment. New Yok: Springer.
Al-Shammari, M., & Masri, H. (2016). Ethical and social perspectives on global business interaction in emerging markets. New York: IGI Global International Publishing.
Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37, 1285–1297.
Aouni, B., Abdealziz, F. B., & Martel, J. M. (2005). Decision-maker’s preferences modeling in the stochastic goal programming. European Journal of Operational Research, 162, 610–618.
Aouni, B., Colapinto, C., & La Torre, D. (2014). Financial portfolio management through the goal programming model: Current state-of-the-art. European Journal of Operational Research, 234(2), 536–545.
Aouni, B., & La Tarre, D. (2010). A generalized stochastic goal programming model. Applied Mathematics and Computation, 215, 4347–4357.
Athanasoulis, S. G., & Shiller, R. J. (2000). The significance of the market portfolio. The Review of Financial Studies, 13(2), 301–329.
Azmi, R., & Tamiz, M. (2010). A review of goal programming for portfolio selection. In: D. Jones et al. (Ed.), New developments in multiple objective and goal programming. Lecture notes in economics and mathematical systems (Vol. 638, pp. 15–33).
Ballestero, E., & PlaSantamaria, D. (2003). Portfolio selection on the Madrid exchange: A compromise programming model. International Transactions in Operational Research, 10, 33–51.
Ballestero, E., & Romero, C. (1996). Portfolio selection: A compromise programming solution. Journal of the Operational Research Society, 47, 1377–1386.
Ben Tal, A. (1991). Portfolio theory for the recourse certainty equivalent maximizing investor. Annals of Operations Research, 31, 479–500.
Bereanu, B., & Peeters, G. (1970). A wait-and-see problem in stochastic linear programming: An experimental computer code. Cahiers du Centre d’Etudes de Recherche Operationelle, 12, 133–148.
Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. Berlin: Springer.
Brentani, C. (2004). Portfolio management in practice. Oxford: Elsevier Butterworth-Heinemann.
Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. New York: Elsevier.
Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisfying under chance constraints. Operations Research, 11, 18–39.
Charnes, A., Cooper, W., & Ferguson, R. O. (1955). Optimal estimation of executive compensation by linear programming. Management Science, 1(2), 138–151.
Cohen, M. H., & Natoli, V. D. (2003). Risk and utility in portfolio optimization. Physica A, 324, 81–88.
Crundwell, F. K. (2008). Finance for engineers evaluation and funding of capital projects. Berlin: Springer.
Ehrgott, M. (2005). Multicriteria optimization. New York: Springer.
Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155, 752–770.
Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.
Filho, V. A. D. (2006). Portfolio management using value at risk: A comparaison between genetic algorithm and partical swarm optimization, Master thesis informatics and Economics. Erasmus Universiteit Rotterdam.
Giannopoulos, K., Clark, E., & Tunaru, R. (2005). Portfolio selection under VaR constraints. Computational Management Science, 2, 123–138.
Huang, X. (2008). Portfolio selection with a new definition of risk. European Journal of Operational Research, 186, 351–357.
Ida, M. (2003). Portfolio selection problem with interval coefficients. Applied Mathematics Letters, 16, 709–713.
Jones, D. F., & Tamiz, M. (2002). Goal programming in the period 1990–2000. In M. Ehrgott & X. Gandibleux (Eds.), Multiple criteria optimization: State of the art annotated bibliographic surveys (pp. 129–170). Berlin: Springer.
Jorion, P. (2001). Value at risk: The new benchmark for managing risk (2nd ed.). New York: McGraw-Hill.
Kall, P., & Wallace, S. (1995). Stochastic programming. Hoboken: Wiley.
Kandasamy, H. (2008). Portfolio selection under various risk measures. Ann Arbor: ProQuest.
Lee, C. F., Finnerty, J. E., & Wort, D. H. (2010). Capital asset pricing model and beta forecasting. In Handbook of quantitative finance and risk management (Vol. II, pp. 93–109).
Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The review of economics and statistics, 47(1), 13–37.
Liu, L. (2004). A new foundation for the mean-variance analysis. European Journal of Operational Research, 158, 229–242.
Mansour, N., Rebai, A., & Aouni, B. (2007). Portfolio selection through imprecise goal programming model: Integration of the manager’s preferences. Journal of Industrial Engineering International, 3(5), 1–8.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.
Markowitz, H. (1959). Portfolio selection: Efficient diversification of investment. Hoboken: Wiley.
Masmoudi, M., & Ben Abdelaziz, F. (2012). A recourse goal programming approach for the portfolio selection problem. INFOR: Information Systems and Operational Research, 50(3), 134–139.
Masmoudi, M., & Ben Abdelaziz, F. (2015). A chance constrained recourse approach for the portfolio selection problem. Annals of Operations Research. doi:10.1007/s10479-015-1844-2.
Masri, H. (2015). A multiple stochastic goal programming approach for the agent portfolio selection problem. Annals of Operations Research. doi:10.1007/s10479-015-1884-7.
Masri, H., Abdelaziz, F. B., & Meftahi, I. (2010). A multiple objective stochastic portfolio selection program with partial information on probability distribution. In Computer and network technology (ICCNT), 2010 second international conference on IEEE (pp. 536–539).
Masri, H., & Abdelaziz, F. B. (2010). Belief linear programming. International Journal of Approximate Reasoning, 51(8), 973–983.
Prakash, A. J., Chang, C., & Pactwa, T. E. (2003). Selecting a portfolio with skewness: Recent evidence from US European, and Latin American equity markets. Journal of Banking and Finance, 27, 1375–1390.
Prékopa, A. (1995). Stochastic programming. New York: Springer.
Rachev, S., & Stoyanov, S. W. (2008). Advanced stochastic models, risk assessment, and portfolio optimization: The ideal risk, uncertainty, and performance measures. Wiley.
Rasmussen, M. (2003). Quantitative portfolio optimization, asset allocation and risk management. New York: Palgrave Macmillan.
Romero, C. (1991). Handbook of critical issues in goal programming. Oxford: Pergamon Press.
Roy, A. D. (1952). Safety-first and the holding of assets. Econometrics, 20, 431–449.
Sen, S., & Higle, J. L. (1999). An introductory tutorial on stochastic linear programming models. Interfaces, 29(2), 33–61.
Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19, 425–442.
Steuer, R., Qi, Y., & Hirschberger, M. (2005). Multiple objectives in portfolio selection. Journal of Financial Decision Making, 1(1), 11–26.
Xia, Y., Liu, B., Wang, S., & Lai, K. K. (2000). A model for portfolio selection with order of expected returns. Computers & Operations Research, 27, 409–422.
Xidonas, P., Askounis, D., & Psarras, J. (2009). Common stock portfolio selection: A multiple criteria decision making methodology and an application to the Athens stock exchange. Operation Research International Journal, 9, 55–79.
Xidonas, P., Mavrotas, G., Krintas, T., Psarras, J., & Zopounidis, C. (2012). Multicriteria portfolio management. New York: Springer.
Xu, J., Zhou, X., & Li, S. (2011). A class of chance constrained multi-objective portfolio selection model under fuzzy random environment. The Journal of Optimization Theory and Applications, 150(3), 530–552.
Zenios, S. A., & Ziemba, W. T. (2006). Handbook of asset and liability management. Amsterdam: Elsevier.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Masmoudi, M., Abdelaziz, F.B. Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models. Ann Oper Res 267, 335–352 (2018). https://doi.org/10.1007/s10479-017-2466-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-017-2466-7