Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models

  • Multiple Objective Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The literature on portfolio selection mostly concentrates on computational analysis rather than on modelling efforts. In response, this paper provides a comprehensive literature review of multiple objective deterministic and stochastic programming models for the portfolio selection problem. First, we summarize different concepts related to portfolio selection theory, including pricing models and portfolio risk measures. Second, we report the mathematical models that are generally used to solve deterministic and stochastic multiple objective programming problems. Finally, we present how these models can be used to solve the portfolio selection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelaziz, F. B. (2012). Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1), 1–16.

    Article  Google Scholar 

  • Abdelaziz, F. B., Aouni, B., & El Fayedh, R. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177, 1811–1821.

    Article  Google Scholar 

  • Abdelaziz, F. B., El Fayedh, R., & Rao, A. (2009). A discrete stochastic goal program for portfolio selection: The case of United Arab Emirates equity market. INFOR, 47(1), 1–5.

    Google Scholar 

  • Abdelaziz, F. B., & Masmoudi, M. (2014). A multiple objective stochastic portfolio selection problem with random Beta. International Transactions in Operational Research, 21(6), 919–933.

    Article  Google Scholar 

  • Abdelaziz, F. B., & Masri, H. (2010). A compromise solution for the multiobjective stochastic linear programming under partial uncertainty. European Journal of Operational Research, 202(1), 55–59.

    Article  Google Scholar 

  • Al-Shammari, M., & Masri, H. (2015). Multiple criteria decision making in finance, insurance and investment. New Yok: Springer.

    Book  Google Scholar 

  • Al-Shammari, M., & Masri, H. (2016). Ethical and social perspectives on global business interaction in emerging markets. New York: IGI Global International Publishing.

    Book  Google Scholar 

  • Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37, 1285–1297.

    Article  Google Scholar 

  • Aouni, B., Abdealziz, F. B., & Martel, J. M. (2005). Decision-maker’s preferences modeling in the stochastic goal programming. European Journal of Operational Research, 162, 610–618.

    Article  Google Scholar 

  • Aouni, B., Colapinto, C., & La Torre, D. (2014). Financial portfolio management through the goal programming model: Current state-of-the-art. European Journal of Operational Research, 234(2), 536–545.

    Article  Google Scholar 

  • Aouni, B., & La Tarre, D. (2010). A generalized stochastic goal programming model. Applied Mathematics and Computation, 215, 4347–4357.

    Article  Google Scholar 

  • Athanasoulis, S. G., & Shiller, R. J. (2000). The significance of the market portfolio. The Review of Financial Studies, 13(2), 301–329.

    Article  Google Scholar 

  • Azmi, R., & Tamiz, M. (2010). A review of goal programming for portfolio selection. In: D. Jones et al. (Ed.), New developments in multiple objective and goal programming. Lecture notes in economics and mathematical systems (Vol. 638, pp. 15–33).

  • Ballestero, E., & PlaSantamaria, D. (2003). Portfolio selection on the Madrid exchange: A compromise programming model. International Transactions in Operational Research, 10, 33–51.

    Article  Google Scholar 

  • Ballestero, E., & Romero, C. (1996). Portfolio selection: A compromise programming solution. Journal of the Operational Research Society, 47, 1377–1386.

    Article  Google Scholar 

  • Ben Tal, A. (1991). Portfolio theory for the recourse certainty equivalent maximizing investor. Annals of Operations Research, 31, 479–500.

    Article  Google Scholar 

  • Bereanu, B., & Peeters, G. (1970). A wait-and-see problem in stochastic linear programming: An experimental computer code. Cahiers du Centre d’Etudes de Recherche Operationelle, 12, 133–148.

    Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. Berlin: Springer.

    Google Scholar 

  • Brentani, C. (2004). Portfolio management in practice. Oxford: Elsevier Butterworth-Heinemann.

    Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. New York: Elsevier.

    Google Scholar 

  • Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisfying under chance constraints. Operations Research, 11, 18–39.

    Article  Google Scholar 

  • Charnes, A., Cooper, W., & Ferguson, R. O. (1955). Optimal estimation of executive compensation by linear programming. Management Science, 1(2), 138–151.

    Article  Google Scholar 

  • Cohen, M. H., & Natoli, V. D. (2003). Risk and utility in portfolio optimization. Physica A, 324, 81–88.

    Article  Google Scholar 

  • Crundwell, F. K. (2008). Finance for engineers evaluation and funding of capital projects. Berlin: Springer.

    Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. New York: Springer.

    Google Scholar 

  • Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155, 752–770.

    Article  Google Scholar 

  • Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.

    Book  Google Scholar 

  • Filho, V. A. D. (2006). Portfolio management using value at risk: A comparaison between genetic algorithm and partical swarm optimization, Master thesis informatics and Economics. Erasmus Universiteit Rotterdam.

  • Giannopoulos, K., Clark, E., & Tunaru, R. (2005). Portfolio selection under VaR constraints. Computational Management Science, 2, 123–138.

    Article  Google Scholar 

  • Huang, X. (2008). Portfolio selection with a new definition of risk. European Journal of Operational Research, 186, 351–357.

    Article  Google Scholar 

  • Ida, M. (2003). Portfolio selection problem with interval coefficients. Applied Mathematics Letters, 16, 709–713.

    Article  Google Scholar 

  • Jones, D. F., & Tamiz, M. (2002). Goal programming in the period 1990–2000. In M. Ehrgott & X. Gandibleux (Eds.), Multiple criteria optimization: State of the art annotated bibliographic surveys (pp. 129–170). Berlin: Springer.

    Google Scholar 

  • Jorion, P. (2001). Value at risk: The new benchmark for managing risk (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kall, P., & Wallace, S. (1995). Stochastic programming. Hoboken: Wiley.

    Google Scholar 

  • Kandasamy, H. (2008). Portfolio selection under various risk measures. Ann Arbor: ProQuest.

    Google Scholar 

  • Lee, C. F., Finnerty, J. E., & Wort, D. H. (2010). Capital asset pricing model and beta forecasting. In Handbook of quantitative finance and risk management (Vol. II, pp. 93–109).

  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The review of economics and statistics, 47(1), 13–37.

    Article  Google Scholar 

  • Liu, L. (2004). A new foundation for the mean-variance analysis. European Journal of Operational Research, 158, 229–242.

    Article  Google Scholar 

  • Mansour, N., Rebai, A., & Aouni, B. (2007). Portfolio selection through imprecise goal programming model: Integration of the manager’s preferences. Journal of Industrial Engineering International, 3(5), 1–8.

    Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investment. Hoboken: Wiley.

    Google Scholar 

  • Masmoudi, M., & Ben Abdelaziz, F. (2012). A recourse goal programming approach for the portfolio selection problem. INFOR: Information Systems and Operational Research, 50(3), 134–139.

  • Masmoudi, M., & Ben Abdelaziz, F. (2015). A chance constrained recourse approach for the portfolio selection problem. Annals of Operations Research. doi:10.1007/s10479-015-1844-2.

  • Masri, H. (2015). A multiple stochastic goal programming approach for the agent portfolio selection problem. Annals of Operations Research. doi:10.1007/s10479-015-1884-7.

  • Masri, H., Abdelaziz, F. B., & Meftahi, I. (2010). A multiple objective stochastic portfolio selection program with partial information on probability distribution. In Computer and network technology (ICCNT), 2010 second international conference on IEEE (pp. 536–539).

  • Masri, H., & Abdelaziz, F. B. (2010). Belief linear programming. International Journal of Approximate Reasoning, 51(8), 973–983.

    Article  Google Scholar 

  • Prakash, A. J., Chang, C., & Pactwa, T. E. (2003). Selecting a portfolio with skewness: Recent evidence from US European, and Latin American equity markets. Journal of Banking and Finance, 27, 1375–1390.

    Article  Google Scholar 

  • Prékopa, A. (1995). Stochastic programming. New York: Springer.

    Book  Google Scholar 

  • Rachev, S., & Stoyanov, S. W. (2008). Advanced stochastic models, risk assessment, and portfolio optimization: The ideal risk, uncertainty, and performance measures. Wiley.

  • Rasmussen, M. (2003). Quantitative portfolio optimization, asset allocation and risk management. New York: Palgrave Macmillan.

    Book  Google Scholar 

  • Romero, C. (1991). Handbook of critical issues in goal programming. Oxford: Pergamon Press.

    Google Scholar 

  • Roy, A. D. (1952). Safety-first and the holding of assets. Econometrics, 20, 431–449.

    Article  Google Scholar 

  • Sen, S., & Higle, J. L. (1999). An introductory tutorial on stochastic linear programming models. Interfaces, 29(2), 33–61.

    Article  Google Scholar 

  • Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19, 425–442.

    Google Scholar 

  • Steuer, R., Qi, Y., & Hirschberger, M. (2005). Multiple objectives in portfolio selection. Journal of Financial Decision Making, 1(1), 11–26.

    Google Scholar 

  • Xia, Y., Liu, B., Wang, S., & Lai, K. K. (2000). A model for portfolio selection with order of expected returns. Computers & Operations Research, 27, 409–422.

    Article  Google Scholar 

  • Xidonas, P., Askounis, D., & Psarras, J. (2009). Common stock portfolio selection: A multiple criteria decision making methodology and an application to the Athens stock exchange. Operation Research International Journal, 9, 55–79.

    Google Scholar 

  • Xidonas, P., Mavrotas, G., Krintas, T., Psarras, J., & Zopounidis, C. (2012). Multicriteria portfolio management. New York: Springer.

    Book  Google Scholar 

  • Xu, J., Zhou, X., & Li, S. (2011). A class of chance constrained multi-objective portfolio selection model under fuzzy random environment. The Journal of Optimization Theory and Applications, 150(3), 530–552.

    Article  Google Scholar 

  • Zenios, S. A., & Ziemba, W. T. (2006). Handbook of asset and liability management. Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Masmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, M., Abdelaziz, F.B. Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models. Ann Oper Res 267, 335–352 (2018). https://doi.org/10.1007/s10479-017-2466-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2466-7

Keywords

Navigation