Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Minimum degree and diversity in intersecting antichains

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(n, \ell\) be positive integers, \(n > 2\ell + 1\). Let X be an n-element set and \(\mathcal{F}\) an antichain, \(\mathcal{F} \subset 2^X\). Kiselev, Kupavskii and Patkós conjectured that if \(|F\cup G| \leq 2\ell + 1\) for all \(F, G \in \mathcal{F}\) then the minimum degree of \(\mathcal{F}\) is no more than \({n - 1\choose \ell - 1}\), the minimum degree of \({[n]\choose \ell}\). We prove this conjecture for \(n \geq \ell^3 + \ell^2 + \frac32 \ell\) and solve the analogous problem for the case \(|F \cap G| \geq t\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford, Ser. (2), 12 (1961), 313–320.

  2. Frankl, P.: Generalizations of theorems of Katona and Milner. Acta Math. Acad. Sci. Hungar. 27, 359–363 (1976)

    Article  MathSciNet  Google Scholar 

  3. P. Frankl, The shifting technique in extremal set theory, in: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 123, Cambridge Univ. Press (Cambridge, 1987), 81–110

  4. Frankl, P.: Shadows and shifting. Graphs Combin. 7, 23–29 (1991)

    Article  MathSciNet  Google Scholar 

  5. Frankl, P.: Antichains of fixed diameter. Moscow J. Combin. Number Theory 7, 189–219 (2017)

    MathSciNet  Google Scholar 

  6. Frankl, P.: Maximum degree and diversity in intersecting hypergraphs. J. Combin. Theory Ser. B 144, 81–94 (2020)

    Article  MathSciNet  Google Scholar 

  7. P. Frankl and A. Kupavskii, Diversity, arXiv:1811.01111

  8. Hao, H.: Two extremal problems on intersecting families. European J. Combin. 76, 1–9 (2019)

    Article  MathSciNet  Google Scholar 

  9. Huang, H., Zhao, Y.: Degree versions of the Erdős-Ko-Rado Theorem and Erdős hypergraph matching conjecture. J. Combin. Theory Ser. A 150, 233–247 (2017)

    Article  MathSciNet  Google Scholar 

  10. Katona, G.O.H.: Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hungar. 15, 329–337 (1964)

    Article  MathSciNet  Google Scholar 

  11. G. O. H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966, Akadémiai Kiadó (Budapest, 1968), pp. 187–207,

  12. J. B. Kruskal, The number of simplices in a complex, in: Math. Optimization Techniques, Univ. of Calif. Press (Berkeley, 1963), pp. 251–278

  13. Kupavskii, A.: Diversity of uniform intersecting families. European J. Combin. 74, 39–47 (2018)

    Article  MathSciNet  Google Scholar 

  14. Kupavskii, A.: Degree versions of theorems on intersecting families via stability. J. Combin. Theory Ser. A 168, 272–287 (2019)

    Article  MathSciNet  Google Scholar 

  15. S. Kiselev, A. Kupavskii and B. Patkós, Personal communication, 2020

  16. Kupavskii, A., Zakharov, D.: Regular bipartite graphs and intersecting families. J. Combin. Theory Ser. A 155, 180–189 (2018)

    Article  MathSciNet  Google Scholar 

  17. Milner, E.C.: A combinatorial theorem on systems of sets. J. London Math. Soc. 43, 204–206 (1968)

    Article  MathSciNet  Google Scholar 

  18. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, 544–548 (1928)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is indebted to Andrey Kupavskii for telling him about Conjecture 1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Frankl.

Additional information

Research partially supported by the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant no. 075-15-2019-1926.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frankl, P. Minimum degree and diversity in intersecting antichains. Acta Math. Hungar. 163, 652–662 (2021). https://doi.org/10.1007/s10474-020-01100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01100-y

Key words and phrases

Mathematics Subject Classification

Navigation