Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A validated model of passive skeletal muscle to predict force and intramuscular pressure

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The passive properties of skeletal muscle are often overlooked in muscle studies, yet they play a key role in tissue function in vivo. Studies analyzing and modeling muscle passive properties, while not uncommon, have never investigated the role of fluid content within the tissue. Additionally, intramuscular pressure (IMP) has been shown to correlate with muscle force in vivo and could be used to predict muscle force in the clinic. In this study, a novel model of skeletal muscle was developed and validated to predict both muscle stress and IMP under passive conditions for the New Zealand White Rabbit tibialis anterior. This model is the first to include fluid content within the tissue and uses whole muscle geometry. A nonlinear optimization scheme was highly effective at fitting model stress output to experimental stress data (normalized mean square error or NMSE fit value of 0.993) and validation showed very good agreement to experimental data (NMSE fit values of 0.955 and 0.860 for IMP and stress, respectively). While future work to include muscle activation would broaden the physiological application of this model, the passive implementation could be used to guide surgeries where passive muscle is stretched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham AC, Kaufman KR, Haut Donahue TL (2012) Phenomenological consequences of sectioning and bathing on passive muscle mechanics of the New Zealand white rabbit tibialis anterior. J Mech Behav Biomed Mater 17:290–295. doi:10.1016/j.jmbbm.2012.10.003

    Article  Google Scholar 

  • Abraham AC, Moyer JT, Villegas DF et al (2011) Hyperelastic properties of human meniscal attachments. J Biomech 44:413–418. doi:10.1016/j.jbiomech.2010.10.001

    Article  Google Scholar 

  • Aratow M, Ballard RE, Crenshaw AG et al (1993) Intramuscular pressure and electromyography as indexes of force during isokinetic exercise. J Appl Physiol 74:2634–2640

    Google Scholar 

  • Ateshian GA, Costa KD (2009) A frame-invariant formulation of Fung elasticity. J Biomech 42:781–785. doi:10.1016/j.jbiomech.2009.01.015

    Article  Google Scholar 

  • Ateshian GA, Rajan V, Chahine NO et al (2009) Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng 131:61003. doi:10.1115/1.3118773

    Article  Google Scholar 

  • Azizi E, Roberts TJ (2009) Biaxial strain and variable stiffness in aponeuroses. J Physiol 587:4309–4318. doi:10.1113/jphysiol.2009.173690

    Article  Google Scholar 

  • Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763. doi:10.1093/oxfordjournals.aje.a009520

    Article  Google Scholar 

  • Blemker SS, Pinsky PM, Delp SL (2005) A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38:657–665. doi:10.1016/j.jbiomech.2004.04.009

    Article  Google Scholar 

  • Calvo B, Ramírez A, Alonso A et al (2010) Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation. J Biomech 43:318–325. doi:10.1016/j.jbiomech.2009.08.032

    Article  Google Scholar 

  • Chi S, Hodgson J, Chen J et al (2010) Finite element modeling reveals complex strain mechanics in the aponeuroses of contracting skeletal muscle. J Biomech 43:1243–1250. doi:10.1016/j.jbiomech.2010.01.005

    Article  Google Scholar 

  • Davis J, Kaufman KR, Lieber RL (2003) Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. J Biomech 36:505–512. doi:10.1016/S0021-9290(02)00430-X

    Article  Google Scholar 

  • Einat R, Yoram L (2009) Recruitment viscoelasticity of the tendon. J Biomech Eng 131:111008. doi:10.1115/1.3212107

    Article  Google Scholar 

  • Fridén J, Lieber RL (1998) Evidence for muscle attachment at relatively long lengths in tendon transfer surgery. J Hand Surg Am 23:105–110. doi:10.1016/S0363-5023(98)80097-X

    Article  Google Scholar 

  • Fridén J, Lieber RL (2002) Tendon transfer surgery: clinical implications of experimental studies. Clin Orthop Relat Res. doi:10.1097/01.blo.0000031974.69509.ef

    Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, Berlin

    Book  Google Scholar 

  • Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237:H620–H631

    Google Scholar 

  • Go SA, Jensen ER, O’Connor SM et al (2016) Design considerations of a fiber optic pressure sensor protective housing for intramuscular pressure measurements. Ann Biomed Eng. doi:10.1007/s10439-016-1703-6

    Google Scholar 

  • Gras LL, Mitton D, Viot P, Laporte S (2013) Viscoelastic properties of the human sternocleidomastoideus muscle of aged women in relaxation. J Mech Behav Biomed Mater 27:77–83. doi:10.1016/j.jmbbm.2013.06.010

    Article  Google Scholar 

  • Gras LL, Mitton D, Viot P, Laporte S (2012) Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J Mech Behav Biomed Mater 15:131–140. doi:10.1016/j.jmbbm.2012.06.013

    Article  Google Scholar 

  • Grasa J, Ramírez a, Osta R et al (2011) A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomech Model Mechanobiol 10:779–787. doi:10.1007/s10237-010-0273-z

    Article  Google Scholar 

  • Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273. doi:10.1115/1.1470171

    Article  Google Scholar 

  • Hernández-Gascón B, Grasa J, Calvo B, Rodríguez JF (2013) A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J Theor Biol 335:108–118. doi:10.1016/j.jtbi.2013.06.029

    Article  Google Scholar 

  • Hodgson Ja, Chi S-W, Yang JP et al (2012) Finite element modeling of passive material influence on the deformation and force output of skeletal muscle. J Mech Behav Biomed Mater 9:163–183. doi:10.1016/j.jmbbm.2012.01.010

    Article  Google Scholar 

  • Hoyt DF (2005) In vivo muscle function vs speed I. Muscle strain in relation to length change of the muscle-tendon unit. J Exp Biol 208:1175–1190. doi:10.1242/jeb.01486

    Article  Google Scholar 

  • Huijing PA (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 32:329–345

    Article  Google Scholar 

  • Jenkyn T, Koopman B, Huijing Pa et al (2002) Finite element model of intramuscular pressure during isometric contraction of skeletal muscle. Phys Med Biol 47:4043–4061

    Article  Google Scholar 

  • Johansson T, Meier P, Blickhan R (2000) A finite-element model for the mechanical analysis of skeletal muscles. J Theor Biol 206:131–149. doi:10.1006/jtbi.2000.2109

    Article  Google Scholar 

  • Kaufman KR, Wavering T, Morrow D et al (2003) Performance characteristics of a pressure microsensor. J Biomech 36:283–287. doi:10.1016/S0021-9290(02)00321-4

    Article  Google Scholar 

  • Khodaei H, Mostofizadeh S, Brolin K et al (2013) Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model. Proc Inst Mech Eng H 227:571–580. doi:10.1177/0954411913476640

    Article  Google Scholar 

  • Körner L, Parker P, Almström C et al (1984) Relation of intramuscular pressure to the force output and myoelectric signal of skeletal muscle. J Orthop Res 2:289–296. doi:10.1002/jor.1100020311

    Article  Google Scholar 

  • LeRoux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124:315–321. doi:10.1115/1.1468868

    Article  Google Scholar 

  • Li LP, Herzog W, Korhonen RK, Jurvelin JS (2005) The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. Med Eng Phys 27:51–57. doi:10.1016/j.medengphy.2004.08.009

    Article  Google Scholar 

  • Lieber RL (2010) Skeletal muscle structure, function, and plasticity. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Lieber RL, Blevins FT (1989) Skeletal muscle architecture of the rabbit hindlimb: functional implications of muscle design. J Morphol 199:93–101. doi:10.1002/jmor.1051990108

    Article  Google Scholar 

  • Lieber RL, Leonard ME, Brown CG, Trestik CL (1991) Frog semitendinosus tendon load–strain and stress–strain properties during passive loading. Am J Physiol 261:C86–C92

    Google Scholar 

  • Lu YT, Zhu HX, Richmond S, Middleton J (2010) A visco-hyperelastic model for skeletal muscle tissue under high strain rates. J Biomech 43:2629–2632. doi:10.1016/j.jbiomech.2010.05.030

    Article  Google Scholar 

  • Lynch HA, Johannessen W, Wu JP et al (2003) Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J Biomech Eng 125:726–731

    Article  Google Scholar 

  • Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:11005. doi:10.1115/1.4005694

    Article  Google Scholar 

  • Mansour JM, Mow VC (1976) The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg Am 58:509–516

    Article  Google Scholar 

  • Meyer GA, McCulloch AD, Lieber RL (2011) A nonlinear model of passive muscle viscosity. J Biomech Eng 133:91007

    Article  Google Scholar 

  • Mohammadkhah M, Murphy P, Simms CK (2016) The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation. J Mech Behav Biomed Mater 62:468–480. doi:10.1016/j.jmbbm.2016.05.021

    Article  Google Scholar 

  • Monti RJ (2003) Mechanical properties of rat soleus aponeurosis and tendon during variable recruitment in situ. J Exp Biol 206:3437–3445. doi:10.1242/jeb.00550

    Article  Google Scholar 

  • Mow V, Gibbs M, Lai W (1989) Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech 22:853–861

    Article  Google Scholar 

  • Mow V, Holmes M, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394

    Article  Google Scholar 

  • Nie X, Cheng J-I, Chen WW, Weerasooriya T (2011) Dynamic tensile response of porcine muscle. J Appl Mech 78:21009. doi:10.1115/1.4002580

    Article  Google Scholar 

  • Olsen S, Oloyede A (2002) A finite element analysis methodology for representing the articular cartilage functional structure. Comput Methods Biomech Biomed Eng 5:377–386. doi:10.1080/1025584021000011091

    Article  Google Scholar 

  • Oomens CWJ, Maenhout M, van Oijen CH et al (2003) Finite element modelling of contracting skeletal muscle. Philos Trans R Soc Lond B Biol Sci 358:1453–1460. doi:10.1098/rstb.2003.1345

    Article  Google Scholar 

  • Peña E, Calvo B, Martínez MA, Doblaré M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39:1686–1701. doi:10.1016/j.jbiomech.2005.04.030

    Article  Google Scholar 

  • Pietsch R, Wheatley BB, Haut Donahue TL et al (2014) Anisotropic compressive properties of passive porcine muscle tissue. J Biomech Eng 136:111003. doi:10.1115/1.4028088

    Article  Google Scholar 

  • Proctor CS, Schmidt MB, Whipple RR et al (1989) Material properties of the normal medial bovine meniscus. J Orthop Res 7:771–782. doi:10.1002/jor.1100070602

    Article  Google Scholar 

  • Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120:757. doi:10.1115/1.2834890

    Article  Google Scholar 

  • Rehorn MR, Schroer AK, Blemker SS (2014) The passive properties of muscle fibers are velocity dependent. J Biomech 47:687–693. doi:10.1016/j.jbiomech.2013.11.044

    Article  Google Scholar 

  • Sandino C, McErlain DD, Schipilow J, Boyd SK (2015) The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study. J Mech Behav Biomed Mater 44:1–9. doi:10.1016/j.jmbbm.2014.12.018

    Article  Google Scholar 

  • Sejersted OM, Hargens AR (1995) Intramuscular pressures for monitoring different tasks and muscle conditions. Adv Exp Med Biol 384:339–350

    Article  Google Scholar 

  • Sejersted OM, Hargens AR, Kardel KR et al (1984) Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J Appl Physiol 56:287–295

    Google Scholar 

  • Setton LA, Zhu W, Mow VC (1993) The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech 26:581–592. doi:10.1016/0021-9290(93)90019-B

    Article  Google Scholar 

  • Simms CK, Van Loocke M, Lyons CG (2012) Skeletal muscle in compression: modeling approaches for the passive muscle bulk. Multiscale Comput Eng 10:143–154

    Article  Google Scholar 

  • Sjøgaard G, Saltin B (1982) Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol 243:R271–R280

    Google Scholar 

  • Spencer AJM (1971) Part III—Theory of invariants. In: Continuum physics. Academic Press, London, pp 239–353

  • Spyrou LA, Aravas N (2011) Muscle and tendon tissues: constitutive modeling and computational issues. J Appl Mech 78:41015. doi:10.1115/1.4003741

    Article  Google Scholar 

  • Takaza M, Moerman KM, Gindre J et al (2012) The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. J Mech Behav Biomed Mater 17:209–220. doi:10.1016/j.jmbbm.2012.09.001

    Article  Google Scholar 

  • Tang CY, Zhang G, Tsui CP (2009) A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J Biomech 42:865–872. doi:10.1016/j.jbiomech.2009.01.021

    Article  Google Scholar 

  • Troyer KL, Estep DJ, Puttlitz CM (2012) Viscoelastic effects during loading play an integral role in soft tissue mechanics. Acta Biomater 8:234–243. doi:10.1016/j.actbio.2011.07.035

    Article  Google Scholar 

  • Van Ee CA, Chasse AL, Myers BS (2000) Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J Biomech Eng 122:9–14. doi:10.1115/1.429621

    Google Scholar 

  • Van Loocke M, Lyons CG, Simms CK (2006) A validated model of passive muscle in compression. J Biomech 39:2999–3009. doi:10.1016/j.jbiomech.2005.10.016

    Article  Google Scholar 

  • Van Loocke M, Lyons CG, Simms CK (2008) Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J Biomech 41:1555–1566. doi:10.1016/j.jbiomech.2008.02.007

    Article  Google Scholar 

  • Van Loocke M, Simms CK, Lyons CG (2009) Viscoelastic properties of passive skeletal muscle in compression—cyclic behaviour. J Biomech 42:1038–1048. doi:10.1016/j.jbiomech.2009.02.022

    Article  Google Scholar 

  • Ward SR, Davis J, Kaufman KR, Lieber RL (2007) Relationship between muscle stress and intramuscular pressure during dynamic muscle contractions. Muscle Nerve 36:313–319. doi:10.1002/mus.20828

    Article  Google Scholar 

  • Warner MD, Taylor WR, Clift SE (2001) Finite element biphasic indentation of cartilage: a comparison of experimental indenter and physiological contact geometries. Proc Inst Mech Eng Part H J Eng Med 215:487–496. doi:10.1243/0954411011536082

    Article  Google Scholar 

  • Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128

    Article  MATH  Google Scholar 

  • Wheatley BB, Fischenich KM, Button KD et al (2015) An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading. J Biomech 48:1454–1460. doi:10.1016/j.jbiomech.2015.02.028

    Article  Google Scholar 

  • Wheatley BB, Morrow DA, Odegard GM et al (2016a) Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity. J Mech Behav Biomed Mater 53:445–454. doi:10.1016/j.jmbbm.2015.08.041

    Article  Google Scholar 

  • Wheatley BB, Odegard GM, Kaufman KR, Donahue TLH (2016) How does tissue preparation affect skeletal muscle transverse isotropy? J Biomech 49:3056–3060. doi:10.1016/j.jbiomech.2016.06.034

  • Wheatley BB, Odegard GM, Kaufman KR, Haut Donahue TL (2016c) Skeletal muscle permeability: direct experimental evaluation and modeling implications. In: Summer biomechanics, bioengineering, and biotransport conference, National Harbor, pp 232–233

  • Wheatley BB, Pietsch RB, Haut Donahue TL, Williams LN (2016d) Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression. Comput Methods Biomech Biomed Engin 19:1181–1189. doi:10.1080/10255842.2015.1118468

    Article  Google Scholar 

  • Winters TM, Sepulveda GS, Cottler PS et al (2009) Correlation between isometric force and intramuscular pressure in rabbit tibialis anterior muscle with an intact anterior compartment. Muscle Nerve 40:79–85. doi:10.1002/mus.21298

    Article  Google Scholar 

  • Yang M, Taber LA (1991) The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J Biomech 24:587–597

    Article  Google Scholar 

  • Yin L, Elliott DM (2004) A biphasic and transversely isotropic mechanical model for tendon. J Biomech 37:907–916. doi:10.1016/j.jbiomech.2003.10.007

    Article  Google Scholar 

  • Yucesoy CA, Koopman BHFJM, Huijing PA, Grootenboer HJ (2002) Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model. J Biomech 35:1253–1262. doi:10.1016/S0021-9290(02)00069-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institutes of Health: National Institute of Child Health and Human Development (R01HD31476-12). The authors would like to gratefully acknowledge and thank Dr. Richard Lieber at the Rehabilitation Institute of Chicago, Dr. Sam Ward at the University of California, San Diego, and Dr. Shawn O’Connor at San Diego State University for providing the experimental in situ stress and intramuscular pressure data. The authors have no other disclosures or conflicts of interest to state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy L Haut Donahue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheatley, B.B., Odegard, G.M., Kaufman, K.R. et al. A validated model of passive skeletal muscle to predict force and intramuscular pressure. Biomech Model Mechanobiol 16, 1011–1022 (2017). https://doi.org/10.1007/s10237-016-0869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0869-z

Keywords

Navigation