Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Necessary and Sufficient Proximity Condition for Smoothness Equivalence of Nonlinear Subdivision Schemes

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In the recent literature on subdivision methods for approximation of manifold-valued data, a certain “proximity condition” comparing a nonlinear subdivision scheme to a linear subdivision scheme has proved to be a key analytic tool for analyzing regularity properties of the scheme. This proximity condition is now well known to be a sufficient condition for the nonlinear scheme to inherit the regularity of the corresponding linear scheme (this is called smoothness equivalence). Necessity, however, has remained an open problem. This paper introduces a smooth compatibility condition together with a new proximity condition (the differential proximity condition). The smooth compatibility condition makes precise the relation between nonlinear and linear subdivision schemes. It is shown that under the smooth compatibility condition, the differential proximity condition is both necessary and sufficient for smoothness equivalence. It is shown that the failure of the proximity condition corresponds to the presence of resonance terms in a certain discrete dynamical system derived from the nonlinear scheme. Such resonance terms are then shown to slow down the convergence rate relative to the convergence rate of the corresponding linear scheme. Finally, a super-convergence property of nonlinear subdivision schemes is used to conclude that the slowed decay causes a breakdown of smoothness. The proof of sufficiency relies on certain properties of the Taylor expansion of nonlinear subdivision schemes, which, in addition, explain why the differential proximity condition implies the proximity conditions that appear in previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In [13, Definition3.5], Grohs gives a similar compatibility condition, which he calls a “differential proximity condition.”

  2. We assume that \(q_{\sigma }\) are \(C^{\infty }\), but our analysis only requires continuity of derivatives up to order \(k+1\), where k is the order of smoothness of \(S_\mathrm{lin}\).

  3. We wish to thank one of the referees for pointing us to this class of nonlinear subdivision rules.

  4. Other authors explore generalizations to settings where the domain space is multi-dimensional but for low order smoothness, see for example [9, 25].

  5. Note how this step would fail if we had an unknown constant \(C>1\) in front of the right-hand side of (3.17).

  6. This observation motivates the \(C^1\) proximity condition that first appeared in [22].

  7. Here, \(S_\mathrm{lin}\) reproduces \(\Pi _k\) means \(S_\mathrm{lin}(\Pi _k) \subset \Pi _k\), which is equivalent to the Fourier domain condition \(\widehat{a}^{(\ell )}(-1)=0\), \(0 \le \ell \le k\) [1, Lemma 3.1], or, equivalently, the time domain condition \(\sum _k a_{2k} \pi (k+1/2) = \sum _k a_{2k+1} \pi (k)\) for all \(\pi \in \Pi _k\). Here \(\widehat{a}^{(\ell )}(z) = \sum _k a_k z^{-k}\) is the symbol of the mask of \(S_\mathrm{lin}\).

  8. In this context, it means \(\Vert \Delta ^2 S_\mathrm{lin}^j x \Vert _\infty = O(2^{-j})\). In general, the Zgymund class [33] is the space of bounded functions which satisfy \(\sup _x | \Delta ^2_h f(x) | = O(h)\). In contrast, functions in \(C^{0,1}\) (=\(\mathrm{Lip} 1\)) satisfy \(\sup _x | \Delta _h f(x) | = O(h)\). It is well known (e.g., [17, 33]) that \(\Lambda _*\supsetneqq \mathrm{Lip} 1 \supsetneqq C^1\). Similarly, \(\Lambda ^{m+1}_*\) is the space of bounded functions with m-th derivatives in \(\Lambda _*\); we have \(C^{m}\supsetneqq \Lambda ^{m+1}_*\supsetneqq C^{m,1} \supsetneqq C^{m+1}\).

References

  1. A. S. Cavaretta, W. Dahmen, and C. A. Micchelli. Stationary subdivision. Mem. Amer. Math. Soc., 453, 1991. American Math. Soc, Providence.

  2. I. Daubechies and J. Lagarias. Two-scale difference equations I. existence and global regularity of solutions. SIAM J. Math. Anal., 22(5):1388–1410, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. A. DeVore and G. G. Lorentz. Constructive Approximation. Springer-Verlag, 1993.

    Book  MATH  Google Scholar 

  4. Z. Ditzian. Moduli of smoothness using discrete data. J. Approx. Theory, 49:115–129, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Duchamp, G. Xie, and T. P.-Y. Yu. Single basepoint subdivision schemes for manifold-valued data: Time-symmetry without space-symmetry. Foundations of Computational Mathematics, 13(5):693–728, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Duchamp, G. Xie, and T. P.-Y. Yu. On a new proximition condition for manifold-valued subdivision schemes. In Gregory E. Fasshauer and Larry L. Schumaker, editors, Approximation Theory XIV: San Antonio 2013, volume 83 of Springer Proceedings in Mathematics & Statistics, pages 65–79. Springer, Cham, 2014.

  7. N. Dyn. Subdivision Schemes in Computer-Aided Geometric Design, pages 36–104. Advances in Numerical Analysis II, Wavelets Subdivision Algorithms and Radial Basis Functions. Clarendon Press, Oxford, 1992.

  8. N. Dyn and R. Goldman. Convergence and smoothness of nonlinear lane-riesenfeld algorithms in the functional setting. Foundations of Computational Math., 11:79–94, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Grohs. Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM Journal on Numerical Analysis, 46(4):2169–2182, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Grohs. Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math., 113(2):163–180, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Grohs. Smoothness of interpolatory multivariate subdivision in Lie groups. IMA Journal of Numerical Analysis, 29(3):760–772, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Grohs. A general proximity analysis of nonlinear subdivision schemes. SIAM Journal on Mathematical Analysis, 42(2):729–750, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Grohs. Stability of manifold-valued subdivision schemes and multiscale transformations. Constructive Approximation, 32(3):569–596, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Grohs. Finite elements of arbitrary order and quasiinterpolation for Riemannian data. IMA Journal of Numerical Analysis, 33(3):849–874, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. W. Hirsch, C. C. Pugh, and M. Shub. Invariant manifolds. Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin, 1977.

  16. R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, 1991.

    Book  MATH  Google Scholar 

  17. Y. Meyer. Wavelets and operators, volume 37 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger.

  18. P. Oswald and T. Shingel. Commutator estimate for nonlinear subdivision. In Michael Floater, Tom Lyche, Marie-Laurence Mazure, Knut Mrken, and LarryL. Schumaker, editors, Mathematical Methods for Curves and Surfaces, volume 8177 of Lecture Notes in Computer Science, pages 383–402. Springer Berlin Heidelberg, 2014.

  19. I. Ur Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schröder. Multiscale representations for manifold-valued data. Multiscale Modeling and Simulation, 4(4):1201–1232, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Rioul. Simple regularity criteria for subdivision schemes. SIAM J. Math. Anal., 23(6):1544–1576, November 1992.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Wallner. Smoothness analysis of subdivision schemes by proximity. Constructive Approximation, 24(3):289–318, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Wallner and N. Dyn. Convergence and \(C^1\) analysis of subdivision schemes on manifolds by proximity. Computer Aided Geometric Design, 22(7):593–622, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Wallner, E. Nava Yazdani, and P. Grohs. Smoothness properties of Lie group subdivision schemes. Multiscale Modeling and Simulation, 6(2):493–505, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Wallner, E. Nava Yazdani, and A. Weinmann. Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Advances in Computational Mathematics, 34(2):201–218, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Weinmann. Nonlinear subdivision schemes on irregular meshes. Constructive Approximation, 31(3):395–415, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Xie and T. P.-P. Yu. An improved proximity\(\Rightarrow \)smoothness theorem. http://www.math.drexel.edu/~tyu/Papers/WeakPimpliesS.pdf, 2015.

  27. G. Xie and T. P.-Y. Yu. Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach. SIAM Journal on Numerical Analysis, 45(3):1200–1225, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Xie and T. P.-Y. Yu. Smoothness equivalence properties of general manifold-valued data subdivision schemes. Multiscale Modeling and Simulation, 7(3):1073–1100, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Xie and T. P.-Y. Yu. Smoothness equivalence properties of interpolatory Lie group subdivision schemes. IMA Journal of Numerical Analysis, 30(3):731–750, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Xie and T. P.-Y. Yu. Approximation order equivalence properties of manifold-valued data subdivision schemes. IMA Journal of Numerical Analysis, 32(2):687–700, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Xie and T. P.-Y. Yu. Invariance property of the proximity condition in nonlinear subdivision. Journal of Approximation Theory, 164(8):1097–1110, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Nava Yazdani and T. P.-Y. Yu. On Donoho’s Log-Exp subdivision scheme: Choice of retraction and time-symmetry. Multiscale Modeling and Simulation, 9(4):1801–1828, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Zygmund. Smooth functions. Duke Math. J., 12:47–76, 1945.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Yu.

Additional information

Communicated by Arieh Iserles.

Tom Duchamp gratefully acknowledges the support and hospitality provided by the IMA during his visit from April to June 2011, when part of the work in this article was completed, as well as travel support through the PIMS CRG on Applied and Computational Harmonic Analysis. Gang Xie’s research was supported by the Fundamental Research Funds for the Central Universities and the National, Natural Science Foundation of China (No.11101146). Thomas Yu’s research was partially supported by the National Science Foundation grants DMS 0915068 and DMS 1115915, as well as a fellowship offered by the Louis and Bessie Stein family. The main result of this paper was first presented in the workshop “New trends in subdivision and related applications” held in the University of Milano-Bicocca, Italy in September 4–7, 2012. He thanks Dennis Yang, Georgi Medvedev, and Mark Levi for discussions on dynamical systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchamp, T., Xie, G. & Yu, T. A Necessary and Sufficient Proximity Condition for Smoothness Equivalence of Nonlinear Subdivision Schemes. Found Comput Math 16, 1069–1114 (2016). https://doi.org/10.1007/s10208-015-9268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9268-6

Keywords

Mathematics Subject Classification

Navigation