Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A new time-varying model for forecasting long-memory series

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this work we propose a new class of long-memory models with time-varying fractional parameter. In particular, the dynamics of the long-memory coefficient, d, is specified through a stochastic recurrence equation driven by the score of the predictive likelihood, as suggested by Creal et al. (J Appl Econom 28:777–795, 2013) and Harvey (Dynamic models for volatility and heavy tails: with applications to financial and economic time series, Cambridge University Press, Cambridge, 2013). We demonstrate the validity of the proposed model by a Monte Carlo experiment and an application to two real time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that the model we propose is different from the fractionally integrated GAS model, proposed in Creal et al. (2013), which assumes that the updating mechanism for \(f_t\) is given by a long-memory model.

  2. The whole dataset can be freely downloaded from https://crudata.uea.ac.uk/cru/data/temperature/#filfor.

  3. This dataset can be freely downloaded from https://finance.yahoo.com.

References

  • Andersen TG, Bollerslev T, Diebold FX, Labys P (2001) The distribution of realized exchange rate volatility. J Am Stat Assoc 96(453):42–55

    Article  MathSciNet  Google Scholar 

  • Beran J (1994) On a class of M-estimators for Gaussian long-memory models. Biometrika 81:755–766

    Article  MathSciNet  Google Scholar 

  • Beran J (2009) On parameter estimation for locally stationary long-memory processes. J Stat Plan Inference 139:900–915

    Article  MathSciNet  Google Scholar 

  • Beran J, Terrin N (1996) Testing for a change of the long-memory parameter. Biometrika 83:627–638

    Article  MathSciNet  Google Scholar 

  • Bernardo J (1979) Expected information as expected utility. Ann Stat 7(3):686–690

    Article  MathSciNet  Google Scholar 

  • Blasques F, Koopman SJ, Lucas A (2014a) Maximum likelihood estimation for correctly specified generalized autoregressive score models: Feedback effects, contraction conditions and asymptotic properties, tinbergen Institute Discussion Papers, 14-074/III

  • Blasques F, Koopman SJ, Lucas A (2014b) Maximum likelihood estimation for score-driven models, tinbergen Institute Discussion Papers, 14-029/III

  • Blasques F, Gorgi P, Koopman SJ (2018a) Missing observations in observation-driven time series models, tinbergen Institute Discussion Papers, 2018-013/III

  • Blasques F, Gorgi P, Koopman SJ, Wintenberger O (2018b) Feasible invertibility conditions and maximum likelihood estimation for observation-driven models. Electron J Stat 12(1):1019–1052

    Article  MathSciNet  Google Scholar 

  • Boubaker H (2018) A generalized arfima model with smooth transition fractional integration parameter. J Time Ser Econom 10:1–20

    MathSciNet  MATH  Google Scholar 

  • Boutahar M, Dufrénot G, Péguin-Feissolle A (2008) A simple fractionally integrated model with a time-varying long memory parameter dt. Comput Econ 31:225–241

    Article  Google Scholar 

  • Caporin M, Pres J (2013) Forecasting temperature indeces density with time-varying long-memory models. J Forecast 32:339–352

    Article  MathSciNet  Google Scholar 

  • Cotter J (2011) Absolute return volatility. Working Papers 200415, Geary Institute, University College Dublin

  • Creal D, Koopman S, Lucas A (2013) Generalized autoregressive score models with applications. J Appl Econom 28:777–795

    Article  MathSciNet  Google Scholar 

  • Delle Monache D, Petrella I (2017) Adaptive models and heavy tails with an application to inflation forecasting. Int J Forecast 33:482–501

    Article  Google Scholar 

  • Diebold FX (2015) Comparing predictive accuracy twenty years later: a personal perspective on the use and abuse of diebold-mariano tests. J Bus Econ Stat 33(1):1–9

    Article  MathSciNet  Google Scholar 

  • Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13(3):253–263

    Google Scholar 

  • Cees Diks PV, Van Dijk D (2011) Likelihood-based scoring rules for comparing density forecasts in tails. J Econom 163(2):215–230

    Article  MathSciNet  Google Scholar 

  • Giacomini R, White H (2006) Tests of conditional predictive ability. Econometrica 74(6):1545–1578

    Article  MathSciNet  Google Scholar 

  • Gneiting T (2008) Editorial: probabilistic forecasting. J R Stat Soc Ser A 171(2):319–321

    Article  MathSciNet  Google Scholar 

  • Gneiting T, Katzfuss M (2014) Probabilistic forecasting. Ann Rev Stat Appl 1:125–151

    Article  Google Scholar 

  • Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102(477):359–378

    Article  MathSciNet  Google Scholar 

  • Gneiting T, Ranjan R (2011) Comparing density forecasts using threshold- and quantile-weighted scoring rules. J Bus Econ Stat 29(3):411–422

    Article  MathSciNet  Google Scholar 

  • Gneiting T, Balabdaoui F, Raftery AE (2007) Probabilistic forecasts, calibration and sharpness. J R Stat Soc B 69(2):243–268

    Article  MathSciNet  Google Scholar 

  • Good I (1852) Rational decisions. J R Stat Soc B 14(1):107–114

    MathSciNet  Google Scholar 

  • Granger C, Ding Z (1996) Varieties of long memory models. J Econom 73:61–77

    Article  MathSciNet  Google Scholar 

  • Granger C, Joyeux R (1980) An introduction to long-range time series models and fractional differencing. J Time Ser Anal 1:15–30

    Article  MathSciNet  Google Scholar 

  • Harvey A (2013) Dynamic models for volatility and heavy tails: with applications to financial and economic time series. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hassler U, Meller B (2014) Detecting multiple breaks in long memory the case of U.S. inflation. Empir Econ 46:653–680

    Article  Google Scholar 

  • Hosking J (1981) Fractional differencing. Biometrika 68:165–176

    Article  MathSciNet  Google Scholar 

  • Ing CK, Wei CZ (2003) On same-realization prediction in an infinite-order autoregressive process. J Multivar Anal 85:130–155

    Article  MathSciNet  Google Scholar 

  • Jensen MJ, Whitcher B (2000) Time-varying long memory in volatility: detection and estimation with wavelets. Technical Report, Eurandom

  • Lu Z, Guegan D (2011) Estimation of time-varying long memory parameter using wavelet method. Commun Stat Simul Comput 40:596–613

    Article  MathSciNet  Google Scholar 

  • Lucas A, Opschoor A (2016) Fractional integration and fat tails for realized covariance kernels and returns, tinbergen Institute Discussion Papers, 2016-069/IV

  • Matheson JE, Winkler RL (1976) Scoring rules for continuous probability distributions. Manag Sci 22(10):1087–1096

    Article  Google Scholar 

  • Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The hadcrut4 dataset. J Geophys Res 117:1–22

    Google Scholar 

  • Palma W (2007) Long-memory time series. Wiley, Hoboken

    Book  Google Scholar 

  • Ray B, Tsay R (2002) Bayesian methods for change-point detection in long-range dependent processes. J Time Ser Anal 23:687–705

    Article  MathSciNet  Google Scholar 

  • Rea W, Reale M, Brown J (2011) Long memory in temperature reconstructions. Clim Change 107:247–265

    Article  Google Scholar 

  • Roueff F, von Sachs R (2011) Locally stationary long memory estimation. Stoch Process Appl 121:813–844

    Article  MathSciNet  Google Scholar 

  • Selten R (1998) Axiomatic characterization of the quadratic scoring rule. Exp Econ 1:43–62

    Article  Google Scholar 

  • Sibbertsen P (2004) Long memory versus structural breaks: an overview. Stat Pap 45:465–515

    Article  MathSciNet  Google Scholar 

  • Tay AS, Wallis KF (2000) Density forecasting: a survey. J Forecast 19(4):235–254

    Article  Google Scholar 

  • Timmermann A (2000) Density forecasting in economics and finance. J Forecast 19(4):231–234

    Article  Google Scholar 

  • Yamaguchi K (2011) Estimating a change point in the long memory parameter. J Time Ser Anal 32:304–314

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Grigoletto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Using Eq. (4), we find

$$\begin{aligned} \nu _j(d_t)&=\frac{\partial \pi _j(d_t)}{\partial d_t}\\&= -d_t\ \frac{-\Gamma '(j-d_t)\, \Gamma (1-d_t)\, \Gamma (j+1) + \Gamma '(1-d_t)\, \Gamma (j+1)\, \Gamma (j-d_t)}{\left( \Gamma (1-d_t)\,\Gamma (j+1)\right) ^2}\\&-\frac{\Gamma (j-d_t)}{\Gamma (1-d_t)\,\Gamma (j+1)}\\&= \frac{-d_t\,\Gamma (j-d_t)}{\Gamma (1-d_t)\,\Gamma (j+1)} \left( \frac{-\Gamma '(j-d_t)}{\Gamma (j-d_t)}+\frac{\Gamma '(1-d_t)}{\Gamma (1-d_t)}+\frac{1}{d_t}\right) \\&=\pi _j(d_t)\left( -\Psi (j-d_t) + \Psi (1-d_t) + \frac{1}{d_t}\right) , \end{aligned}$$

where \(\Psi (\cdot )=\Gamma ^{'}(\cdot )/\Gamma (\cdot )\) is the digamma function. Therefore:

$$\begin{aligned} \nabla _t&= - \frac{1}{\sigma ^2}\left( y_t + \sum _{j=1}^{t-1} \pi _j(d_t)\, y_{t-j} \right) \left( \sum _{j=1}^{t-1} \frac{\partial \pi _j(d_t)}{\partial d_t}\, y_{t-j}\right) \\&=- \frac{1}{\sigma ^2}\left( y_t + \sum _{j=1}^{t-1} \pi _j(d_t)\, y_{t-j} \right) \left( \sum _{j=1}^{t-1} \nu _j(d_t)\, y_{t-j}\right) . \end{aligned}$$

Now, observe that:

$$\begin{aligned} \frac{\partial ^2 \pi _j(d_t)}{\partial d_t}&= \nu _j(d_t) \left[ -\Psi (j-d_t) + \Psi (1-d_t) + \frac{1}{d_t}\right] \\&\quad +\,\pi _j(d_t) \left[ \Psi ^{'}(j-d_t) - \Psi ^{'}(1-d_t) - \frac{1}{d^2_t}\right] \ . \end{aligned}$$

Hence, we find

$$\begin{aligned} \mathcal {I}_{t-1} = -E_{t-1}\!\!\left[ \frac{\partial \nabla _t}{\partial d_t} \right]&= \frac{1}{\sigma ^2}\, E_{t-1}\!\!\left[ \left( \sum _{j=1}^{t-1} \nu _j(d_t)\, y_{t-j} \right) ^2 \right. \\&\quad +\,\left. \left( y_t + \sum _{j=1}^{t-1}\pi _j(d_t)\, y_{t-j}\right) \left( \sum _{j=1}^{t-1} \frac{\partial ^2 \pi _j(d_t)}{\partial d_t}\, y_{t-j}\right) \right] \\&= \frac{1}{\sigma ^2}\, \left( \sum _{j=1}^{t-1} \nu _j(d_t)\, y_{t-j} \right) ^2, \end{aligned}$$

where we used \(E_{t-1}\!\left[ y_t + \sum _{j=1}^{t-1}\pi _j(d_t)\, y_{t-j}\right] =E_{t-1}\!\left[ \epsilon _t\right] =0\). Finally:

$$\begin{aligned}S_t=\mathcal {I}_{t-1}^{-1} = \sigma ^2\, \left( \sum _{j=1}^{t-1} \nu _j(d_t)\, y_{t-j} \right) ^{-2}\ .\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisaglia, L., Grigoletto, M. A new time-varying model for forecasting long-memory series. Stat Methods Appl 30, 139–155 (2021). https://doi.org/10.1007/s10260-020-00517-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-020-00517-7

Keywords

Navigation