Abstract
Discussion of “Nonparametric Bayesian Inference in Applications” by Peter Mueller, Fernando A. Quintana, Garritt Page: More Nonparametric Bayesian Inference in Applications.
Similar content being viewed by others
References
Airoldi E, Costa T, Bassetti F, Guindani M, Leisen F (2014) Generalized species sampling priors with latent beta reinforcements. J Am Stat Assoc 109(508):1466–1480
Bassetti F, Crimaldi I, Leisen F (2010) Conditionally identically distributed species sampling sequences. Adv Appl Probab 42(2):433–459
Berti P, Pratelli L, Rigo P (2004) Limit theorems for a class of identically distributed random variables. Ann Probab 32(3):2029–2052
Branscum AJ, Johnson WO, Hanson TE, Gardner IA (2008) Bayesian semiparametric ROC curve estimation and disease diagnosis. Stat Med 27(13):2474–2496
Branscum AJ, Johnson WO, Hanson TE, Baron AT (2015) Flexible regression models for ROC and risk analysis, with or without a gold standard. Stat Med 34(30):3997–4015
Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541
De Iorio M, Johnson WO, Müller P, Rosner GL (2009) Bayesian nonparametric non-proportional hazards survival modelling. Biometrics 65(3):762–771
Do K, Müller P, Tang F (2005) A Bayesian mixture model for differential gene expression. J R Stat Soc Ser C 54(3):627–644
Du L, Chen M, Lucas J, Carlin L (2010) Sticky hidden Markov modelling of comparative genomic hybridization. IEEE Trans Signal Process 58(10):5353–5368
Durante D, Dunson DB, Vogelstein JT (2016) Nonparametric Bayes modeling of populations of networks. J Am Stat Assoc. doi:10.1080/01621459.2016.1219260
Efron B (2004) Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. J Am Stat Assoc 99(465):96–104
Flournoy N, May C, Secchi P (2012) Asymptotically optimal response-adaptive designs for allocating the best treatment: an overview. Int Stat Rev 80(2):293–305
Fortini S, Petrone S, Sporysheva P (2016) On a notion of partially conditionally identically distributed sequences. Technical report arXiv:1608.00471
Fox E, Sudderth E, Jordan M, Willsky A (2011) A sticky HDP-HMM with application to speaker diarization. Ann Appl Stat 5(2A):1020–1056
Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36
Geisser S, Eddy WF (1979) A predictive approach to model selection. J Am Stat Assoc 74(365):153–160
Gelfand A, Kottas A, MacEachern S (2005) Bayesian nonparametric spatial modeling with Dirichlet processes mixing. J Am Stat Assoc 100:1021–1035
Guindani M, Müller P, Zhang S (2009) A Bayesian discovery procedure. J R Stat Soc B 71(5):905–925
Guindani M, Sepúlveda N, Paulino CD, Müller P (2014) A Bayesian semiparametric approach for the differential analysis of sequence counts data. J R Stat Soc Ser C (Appl Stat) 63(3):385–404
Hanson T, Johnson WO (2002) Modeling regression error with a mixture of Polya trees. J Am Stat Assoc 97(460):1020–1033
Hanson T, Johnson WO (2004) A Bayesian semiparametric AFT model for interval-censored data. J Comput Graph Stat 13(2):341–361
Hanson T, Johnson W, Laud P (2009) Semiparametric inference for survival models with step process covariates. Can J Stat 37(1):60–79
Hanson T, Branscum A, Johnson W (2011) Predictive comparison of joint longitudinal-survival modeling: a case study illustrating competing approaches (with discussion). Lifetime Data Anal 17:3–18
He Y (2014) Bayesian cluster analysis with longitudinal data. Ph.D. thesis, Department of Statistics, University of California, Irvine
Hu F, Zhang LX (2004) Asymptotic properties of doubly adaptive biased coin designs for multitreatment clinical trials. Ann Stat 32(1):268–301
Jbabdi S, Woolrich M, Behrens T (2009) Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 44(2):373–384
Johnson W, de Carvalho M (2015) Bayesian nonparametric biostatistics. In: Mitra R, Müller P (eds) Nonparametric Bayesian methods in biostatistics and bioinformatics. Springer, New York, pp 15–53
Kim S, Dahl DB, Vannucci M (2009) Spiked Dirichlet process prior for Bayesian multiple hypothesis testing in random effects models. Bayesian Anal 4(4):707–732
Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974
Li Y, Lin X, Müller P (2010) Bayesian inference in semiparametric mixed models for longitudinal data. Biometrics 66(1):70–78
Li F, Zhang T, Wang Q, Gonzalez M, Maresh E, Coan J (2015) Spatial Bayesian variable selection and grouping for high-dimensional scalar-on-image regression. Ann Appl Stat 9(12):687–713
Muliere P, Paganoni AM, Secchi P (2006) A randomly reinforced urn. J Stat Plan Inference 136(6):1853–1874
Müller P, Parmigiani G, Robert CP, Rousseau J (2004) Optimal sample size for multiple testing: the case of gene expression microarrays. J Am Stat Assoc 99:990–1001
Müller P, Parmigiani G, Rice K (2007) FDR and Bayesian multiple comparisons rules. In: Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A, West M (eds) Bayesian Stat 8. Oxford University Press, Oxford
Norris M, Johnson W, Gardner I (2014) A semiparametric model for bivariate longitudinal diagnostic outcome data in the absence of a gold standard. Stat Interface 7:417–438
Quintana FA, Johnson WO, Waetjen LE, Gold EB (2016) Bayesian nonparametric longitudinal data analysis. J Am Stat Assoc 111(515):1168–1181
Shahbaba B, Johnson WO (2013) Bayesian nonparametric variable selection as an exploratory tool for discovering differentially expressed genes. Stat Med 32(12):2114–2126
Sun W, Reich BJ, Tony Cai T, Guindani M, Schwartzman A (2015) False discovery control in large-scale spatial multiple testing. J R Stat Soc Ser B (Stat Methodol) 77(1):59–83
Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet processes. J Am Stat Assoc 101(476):1566–1581
Zeger SL, Diggle PJ (1994) Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 50(3):689–699
Zhang L, Guindani M, Versace F, Vannucci M (2014) A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. NeuroImage 95:162–175
Zhang L, Guindani M, Versace F, Engelmann JM, Vannucci M (2016) A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data. Ann Appl Stat 10(2):638–666
Acknowledgements
Funding was provided by US National Science Foundation - Directorate for Social, Behavioral and Economic Sciences (Grant No. 1659921).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guindani, M., Johnson, W.O. More nonparametric Bayesian inference in applications. Stat Methods Appl 27, 239–251 (2018). https://doi.org/10.1007/s10260-017-0399-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10260-017-0399-6