Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Scaling, proximity, and optimization of integrally convex functions

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In discrete convex analysis, the scaling and proximity properties for the class of L\(^{\natural }\)-convex functions were established more than a decade ago and have been used to design efficient minimization algorithms. For the larger class of integrally convex functions of n variables, we show here that the scaling property only holds when \(n \le 2\), while a proximity theorem can be established for any n, but only with a superexponential bound. This is, however, sufficient to extend the classical logarithmic complexity result for minimizing a discrete convex function of one variable to the case of integrally convex functions of any fixed number of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \({{\mathbb {Z}}}\)-valued functions are treated in [4, Theorem 3], but the proof is valid for \({{\mathbb {R}}}\)-valued functions.

  2. Recall that \(n=3\) in Example 4.4.

  3. x is f-minimal if and only if \(\arg \min f_{[ \mathbf{0},x ]} = \{ x \}\) for the function \( f_{[\mathbf{0},x]}(y) = \left\{ \begin{array}{cl} f(y) &{}\quad (y \in [\mathbf{0},x]_{{{\mathbb {Z}}}}), \\ +\,\infty &{}\quad (y \in {{\mathbb {Z}}}^{n} {\setminus } [\mathbf{0},x]_{{{\mathbb {Z}}}}). \end{array}\right. \)

  4. See H. Tuy: D.C. optimization: Theory, methods and algorithms, in: R. Horst and P. M. Pardalos, eds., Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht, 1995, 149–216; Lemma 2 to be specific.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows—Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ric. Oper. 53, 3–44 (1990)

    Google Scholar 

  3. Fujishige, S.: Bisubmodular polyhedra, simplicial divisions, and discrete convexity. Discrete Optim. 12, 115–120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Math. Program. 88, 129–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hemmecke, R., Köppe, M., Lee, J., Weismantel, R.: Chapter 15 Nonlinear integer programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp. 561–618. Springer, Berlin (2010)

    Google Scholar 

  6. Hirai, H.: L-extendable functions and a proximity scaling algorithm for minimum cost multiflow problem. Discrete Optim. 18, 1–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirai, H.: L-convexity on graph structures. J. Oper. Res. Soc. Japan (to appear) (2018)

  8. Hochbaum, D.S.: Complexity and algorithms for nonlinear optimization problems. Ann. Oper. Res. 153, 257–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. Assoc. Comput. Mach. 37, 843–862 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Boston (1988)

    MATH  Google Scholar 

  11. Iimura, T.: Discrete modeling of economic equilibrium problems. Pac. J. Optim. 6, 57–64 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Iimura, T., Murota, K., Tamura, A.: Discrete fixed point theorem reconsidered. J. Math. Econ. 41, 1030–1036 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iimura, T., Watanabe, T.: Existence of a pure strategy equilibrium in finite symmetric games where payoff functions are integrally concave. Discrete Appl. Math. 166, 26–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iwata, S., Moriguchi, S., Murota, K.: A capacity scaling algorithm for M-convex submodular flow. Math. Program. 103, 181–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwata, S., Shigeno, M.: Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization. SIAM J. Optim. 13, 204–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katoh, N., Shioura, A., Ibaraki, T.: Resource allocation problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, vol. 5, 2nd edn, pp. 2897–2988. Springer, Berlin (2013)

    Chapter  Google Scholar 

  17. van der Laan, G., Talman, D., Yang, Z.: Solving discrete systems of nonlinear equations. Eur. J. Oper. Res. 214, 493–500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moriguchi, S., Murota, K., Shioura, A.: Scaling algorithms for M-convex function minimization. In: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E85–A, pp. 922–929 (2002)

  19. Moriguchi, S., Murota, K., Tamura, A., Tardella, F.: Discrete midpoint convexity. arXiv:1708.04579 (2017)

  20. Moriguchi, S., Shioura, A., Tsuchimura, N.: M-convex function minimization by continuous relaxation approach—proximity theorem and algorithm. SIAM J. Optim. 21, 633–668 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moriguchi, S., Tsuchimura, N.: Discrete L-convex function minimization based on continuous relaxation. Pac. J. Optim. 5, 227–236 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  24. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219–260. Springer, Berlin (2009)

    Chapter  Google Scholar 

  25. Murota, K.: Discrete convex analysis: a tool for economics and game theory. J. Mech. Inst. Des. 1, 151–273 (2016)

    Google Scholar 

  26. Murota, K., Tamura, A.: Proximity Theorems of Discrete Convex Functions. RIMS Preprint 1358, Kyoto University (2002)

  27. Murota, K., Tamura, A.: Proximity theorems of discrete convex functions. Math. Program. 99, 539–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Queyranne, M., Tardella, F.: Bimonotone linear inequalities and sublattices of \({\mathbb{R}}^{n}\). Linear Algebra Appl. 413, 100–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  30. Shioura, A.: Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem. Discrete Appl. Math. 134, 303–316 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tamir, A.: A strongly polynomial algorithm for minimum convex separable quadratic cost flow problems on series–parallel networks. Math. Program. 59, 117–132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tamir, A.: New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems. Oper. Res. Lett. 37, 303–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tamura, A.: Coordinatewise domain scaling algorithm for M-convex function minimization. Math. Program. 102, 339–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, Z.: On the solutions of discrete nonlinear complementarity and related problems. Math. Oper. Res. 33, 976–990 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, Z.: Discrete fixed point analysis and its applications. J. Fixed Point Theory Appl. 6, 351–371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Yoshio Okamoto for communicating a relevant reference and two anonymous referees for detailed comments. This research was initiated at the Trimester Program “Combinatorial Optimization” at Hausdorff Institute of Mathematics, 2015. This work was supported by The Mitsubishi Foundation, CREST, JST, Grant Number JPMJCR14D2, Japan, and JSPS KAKENHI Grant Numbers JP26350430, JP26280004, JP16K00023, JP17K00037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoko Moriguchi.

Additional information

The extended abstract of this paper is included in the Proceedings of the 27th International Symposium on Algorithms and Computation (ISAAC), Sydney, December 12–14, 2016. Leibniz International Proceedings in Informatics (LIPIcs), 64 (2016), 57:1–57:12, Dagstuhl Publishing.

Appendices

Appendix A: An alternative Proof of Theorem 2.4

Here is a proof of Theorem 2.4 (local characterization of integral convexity) that is shorter than the original proof in [2] and valid for functions defined on general integrally convex sets rather than discrete rectangles.

Obviously, (a) implies (b). The proof for the converse, (b) \(\Rightarrow \) (a), is given by the following two lemmas, where integral convexity of \(\mathrm{dom\,}f\) and condition (b) are assumed.

Lemma A.1

Let \(B \subseteq {{\mathbb {R}}}^{n}\) be a box of size two with integer vertices, i.e., \(B = [ {a}, {a} + 2 \varvec{1} ]_{{{\mathbb {R}}}}\) for some \({a} \in {{\mathbb {Z}}}^{n}\). Then \({\tilde{f}}\) is convex on \(B \cap \overline{\mathrm{dom\,}f}\).

Proof

First, the assumed integral convexity of \(\mathrm{dom\,}f\) implies that \(B \cap \overline{\mathrm{dom\,}f} = \overline{B \cap \mathrm{dom\,}f}\) and that every point in \(B \cap \overline{\mathrm{dom\,}f}\) can be represented as a convex combination of points in \(B \cap \mathrm{dom\,}f\). We may assume \(B = [ \varvec{0}, 2 \varvec{1} ]_{{{\mathbb {R}}}}\). To prove by contradiction, assume that there exist \(x \in B \cap \overline{\mathrm{dom\,}f}\) and \(y^{1},\ldots , y^{m} \in B \cap \mathrm{dom\,}f\) such that

$$\begin{aligned} x = \sum _{i=1}^{m} \lambda _{i} y^{i}, \qquad {\tilde{f}}(x) > \sum _{i=1}^{m} \lambda _{i} f(y^{i}), \end{aligned}$$
(A.1)

where \(\sum _{i=1}^{m} \lambda _{i} = 1\) and \(\lambda _{i} > 0 \ (i=1,\ldots , m)\). We may also assume \(x \in [ \varvec{0}, \varvec{1} ]_{{{\mathbb {R}}}}\) without loss of generality. For each \(j=1,\ldots , n\), we look at the j-th component of the generating points \(y^{i}\) to define

$$\begin{aligned} I_{j}^{0} = \left\{ i \mid y^{i}_{j} = 0 \right\} , \qquad I_{j}^{2} = \left\{ i \mid y^{i}_{j} = 2 \right\} . \end{aligned}$$

Since \( x_{j} = \sum _{i=1}^{m} \lambda _{i} y^{i}_{j} \le 1\), if \(I_{j}^{2} \not = \emptyset \), then \(I_{j}^{0} \not = \emptyset \).

Let \(j=n\) and suppose that \(I_{n}^{2} \not = \emptyset \). Then \(I_{n}^{0} \not = \emptyset \). We may assume \(y^{1}_{n} = 0\), \(y^{2}_{n} = 2\); \(\lambda _{1} > 0\), \(\lambda _{2} > 0\). By (2.2) for \((y^{1}, y^{2})\) and the definition of \({\tilde{f}}\) we have

$$\begin{aligned} f(y^{1}) + f(y^{2}) \ge 2 {\tilde{f}}\, \bigg (\frac{y^{1} + y^{2}}{2} \bigg ) = 2 \sum _{k=1}^{l} \mu _{k} f(z^{k}), \end{aligned}$$

where

$$\begin{aligned} \frac{y^{1} + y^{2}}{2} = \sum _{k=1}^{l} \mu _{k} z^{k}, \qquad z^{k} \in N \bigg ( \frac{y^{1} + y^{2}}{2} \bigg ) \cap \mathrm{dom\,}f \quad (k=1,\ldots , l)\qquad \end{aligned}$$
(A.2)

with \(\mu _{k} > 0\)\((k=1,\ldots , l)\) and \(\sum _{k=1}^{l} \mu _{k} = 1\). This implies, with notation \(\lambda = \min (\lambda _{1}, \lambda _{2})\), that

$$\begin{aligned} \lambda _{1} f(y^{1}) + \lambda _{2} f(y^{2}) \ge (\lambda _{1} - \lambda ) f(y^{1}) + (\lambda _{2}-\lambda ) f(y^{2}) + 2 \lambda \sum _{k=1}^{l} \mu _{k} f(z^{k}). \end{aligned}$$

Hence

$$\begin{aligned} \sum _{i=1}^{m} \lambda _{i} f(y^{i}) \ge (\lambda _{1} - \lambda ) f(y^{1}) + (\lambda _{2}-\lambda ) f(y^{2}) + 2 \lambda \sum _{k=1}^{l} \mu _{k} f(z^{k}) + \sum _{i=3}^{m} \lambda _{i} f(y^{i}). \end{aligned}$$

Since

$$\begin{aligned} x = (\lambda _{1} - \lambda ) y^{1} + (\lambda _{2}-\lambda ) y^{2} + 2 \lambda \sum _{k=1}^{l} \mu _{k} z^{k} + \sum _{i=3}^{m} \lambda _{i} y^{i}, \end{aligned}$$

we have obtained another representation of the form (A.1). With reference to this new representation define \({\hat{I}}_{n}^{0}\) (resp., \({\hat{I}}_{n}^{2}\)) to be the set of indices of the generators whose n-th component is equal to 0 (resp., 2). Since \(z^{k}_{n} = 1\) for all k as a consequence of (A.2) with \((y^{1}_{n}+ y^{2}_{n})/2 = (0 + 2)/2 = 1\), we have \({\hat{I}}_{n}^{0} \subseteq I_{n}^{0}\), \({\hat{I}}_{n}^{2} \subseteq I_{n}^{2}\) and \(|{\hat{I}}_{n}^{0}| + |{\hat{I}}_{n}^{2}| \le |I_{n}^{0}| + |I_{n}^{2}| - 1\).

By repeating the above process with \(j=n\), we eventually arrive at a representation of the form of (A.1) with \(I_{n}^{2} = \emptyset \), which means that \(y^{i}_{n} \in \{ 0,1 \}\) for all generators \(y^{i}\).

Then we repeat the above process for \(j=n-1,n-2, \ldots ,1\), to obtain a representation of the form of (A.1) with \(y^{i} \in [ \varvec{0}, \varvec{1} ]_{{{\mathbb {Z}}}}\) for all generators \(y^{i}\). This contradicts the definition of \({\tilde{f}}\). \(\square \)

Lemma A.2

For any \(x, y \in \overline{\mathrm{dom\,}f}\), \({\tilde{f}}\) is convex on the line segment connecting x and y.

Proof

Let L denote the (closed) line segment connecting x and y, and consider the boxes B, as in Lemma A.1, that intersect L. There exists a finite number of such boxes, say, \(B_{1}, \ldots , B_{m}\), and L is covered by the line segments \(L_{j} = L \cap B_{j}\)\((j=1,\ldots , m)\). That is, \( L = \bigcup _{j=1}^{m} L_{j}\). For each point \(z \in L {\setminus } \{ x, y \}\), there exists some \(L_{j}\) that contains z in its interior. Since \(L_{j} \subseteq L \subseteq \overline{\mathrm{dom\,}f}\), \({\tilde{f}}\) is convex on \(L_{j}\) by Lemma A.1. HenceFootnote 4\({\tilde{f}}\) is convex on L. \(\square \)

Appendix B: Proof of Proposition 5.3

It is known (cf. [29, proof of Theorem 16.4]) that the set of integer vectors contained in

$$\begin{aligned} F_{A}= & {} \left\{ \sum _{i \in A} \mu _{i}^{+}(\varvec{1}_{A} + \varvec{1}_{i}) + \sum _{i \in A} \mu _{i}^{-} (\varvec{1}_{A} - \varvec{1}_{i}) + \sum _{i \in N {\setminus } A} \mu _{i}^{\circ } (\varvec{1}_{A}+ \varvec{1}_{i})\right. \\&\left. + \lambda \varvec{1}_{A} \, \left| \begin{array}{l} \mu _{i}^{+}, \mu _{i}^{-} \in [0,1]_{{{\mathbb {R}}}}\;(i \in A); \\ \mu _{i}^{\circ } \in [0,1]_{{{\mathbb {R}}}}\; (i \in N {\setminus } A) ; \\ \lambda \in [0,1]_{{{\mathbb {R}}}} \end{array}\right. \right\} \end{aligned}$$

forms a Hilbert basis of \({\tilde{C}}_{A}\). Let z be an integer vector in \(F_{A}\). That is, \(z \in {{\mathbb {Z}}}^{n}\) and

$$\begin{aligned} z&= \sum _{i \in A} \mu _{i}^{+}\left( \varvec{1}_{A} + \varvec{1}_{i}\right) + \sum _{i \in A} \mu _{i}^{-} \left( \varvec{1}_{A} - \varvec{1}_{i}\right) + \sum _{i \in N {\setminus } A} \mu _{i}^{\circ } \left( \varvec{1}_{A}+ \varvec{1}_{i}\right) + \lambda \varvec{1}_{A} \end{aligned}$$
(B.1)
$$\begin{aligned}&= \sum _{i \in A} \left( \mu _{i}^{+}-\mu _{i}^{-}\right) \varvec{1}_{i} + \sum _{i \in N {\setminus } A} \mu _{i}^{\circ } \left( \varvec{1}_{A} + \varvec{1}_{i}\right) + \left( \lambda + \sum _{i \in A} \left( \mu _{i}^{+} + \mu _{i}^{-}\right) \right) \varvec{1}_{A}\quad \end{aligned}$$
(B.2)

for some \(\mu _{i}^{+}, \mu _{i}^{-} \in [0,1]_{{{\mathbb {R}}}}\;(i \in A)\); \(\mu _{i}^{\circ } \in [0,1]_{{{\mathbb {R}}}}\; (i \in N {\setminus } A)\); \(\lambda \in [0,1]_{{{\mathbb {R}}}}\). Our goal is to show that z can be represented as a nonnegative integer combination of vectors in \(B_{A}\).

First note that \(\mu _{i}^{\circ } \in \{ 0, 1 \}\) for each \(i \in N {\setminus } A\); define \(A^{\circ } = \{ i \in N {\setminus } A \mid \mu _{i}^{\circ }=1 \}\). We denote the coefficient of \(\varvec{1}_{A}\) in (B.2) as

$$\begin{aligned} \xi = \lambda + \sum _{i \in A} \left( \mu _{i}^{+} + \mu _{i}^{-}\right) \end{aligned}$$

and divide into cases according to whether \(\xi \) is an integer or not.

Case 1 (\(\xi \in {{\mathbb {Z}}}\)): Using \(\xi \) we rewrite (B.2) as

$$\begin{aligned} z&= \sum _{i \in A} \left( \mu _{i}^{+}-\mu _{i}^{-}\right) \varvec{1}_{i} + \sum _{i \in N {\setminus } A} \mu _{i}^{\circ } (\varvec{1}_{A} + \varvec{1}_{i}) + \xi \varvec{1}_{A}, \end{aligned}$$

in which \(\xi \) is an integer. For each \(i \in A\), \(\mu _{i}^{+}-\mu _{i}^{-}\) must be an integer, which is equal to 0, 1 or \(-1\). Accordingly we define

$$\begin{aligned} A^{=}&= \left\{ i \in A \mid \mu _{i}^{+}-\mu _{i}^{-} = 0 \right\} , \\ A^{>}&= \left\{ i \in A \mid \mu _{i}^{+}-\mu _{i}^{-} = 1 \right\} = \left\{ i \in A \mid \mu _{i}^{+}=1, \ \mu _{i}^{-} = 0 \right\} , \\ A^{<}&= \left\{ i \in A \mid \mu _{i}^{+}-\mu _{i}^{-} = -1 \right\} = \left\{ i \in A \mid \mu _{i}^{+}=0, \ \mu _{i}^{-} = 1 \right\} \end{aligned}$$

to rewrite (B.1) as

$$\begin{aligned} z = \sum _{i \in A^{>}} (\varvec{1}_{A} + \varvec{1}_{i}) + \sum _{i \in A^{<}} (\varvec{1}_{A} - \varvec{1}_{i}) + \sum _{i \in A^{\circ }} (\varvec{1}_{A}+ \varvec{1}_{i}) + \left( \lambda + \sum _{i \in A^{=}} \left( \mu _{i}^{+} + \mu _{i}^{-}\right) \right) \varvec{1}_{A}.\nonumber \\ \end{aligned}$$
(B.3)

Here the coefficient of \(\varvec{1}_{A}\) is integral, since

$$\begin{aligned} \lambda + \sum _{i \in A^{=}} (\mu _{i}^{+} + \mu _{i}^{-}) = \xi - \sum _{i \in A^{>} } 1 - \sum _{i \in A^{<}} 1. \end{aligned}$$

Hence (B.3) gives a representation of z as a nonnegative integer combination of vectors in \(B_{A}\).

Case 2 (\(\xi \not \in {{\mathbb {Z}}}\)): Let \(\eta \) denote the fractional part of \(\xi \), i.e., \(\eta = \xi - \lfloor \xi \rfloor \) with \(0< \eta < 1\). We rewrite (B.2) as

$$\begin{aligned} z = \sum _{i \in A} (\mu _{i}^{+}-\mu _{i}^{-} + \eta )\varvec{1}_{i} + \sum _{i \in N {\setminus } A} \mu _{i}^{\circ } (\varvec{1}_{A} + \varvec{1}_{i}) + \lfloor \xi \rfloor \varvec{1}_{A}. \end{aligned}$$
(B.4)

For each \(i \in A\), \(\mu _{i}^{+}-\mu _{i}^{-} + \eta \) must be an integer, which is equal to 1 or 0. Accordingly we define

$$\begin{aligned} A^{+}&= \left\{ i \in A \mid \mu _{i}^{+}-\mu _{i}^{-} + \eta = 1 \right\} , \\ A^{-}&= \left\{ i \in A \mid \mu _{i}^{+}-\mu _{i}^{-} + \eta = 0 \right\} . \end{aligned}$$

Then

$$\begin{aligned} \lfloor \xi \rfloor \ge \min (|A^{+}|, |A^{-}| ), \end{aligned}$$

which follows from

$$\begin{aligned}&\mu _{i}^{+} + \mu _{i}^{-} \left\{ \begin{array}{ll} = 2\mu _{i}^{-} + 1-\eta \ge 1 - \eta &{} (i \in A^{+}) \\ = 2\mu _{i}^{+} + \eta \ge \eta &{} (i \in A^{-}), \end{array} \right. \\&\xi = \lambda + \sum _{i \in A} \left( \mu _{i}^{+} + \mu _{i}^{-}\right) \ge (1 - \eta ) |A^{+}| + \eta |A^{-}| \ge \min (|A^{+}|, |A^{-}| ). \end{aligned}$$

In the case of \(|A^{+}| \le |A^{-}|\), we see from (B.4) that

$$\begin{aligned} z&= \sum _{i \in A^{+}} \varvec{1}_{i} + \sum _{i \in A^{\circ }} (\varvec{1}_{A}+ \varvec{1}_{i}) + \lfloor \xi \rfloor \varvec{1}_{A} \\&= \sum _{i \in A^{+}} (\varvec{1}_{A} + \varvec{1}_{i}) + \sum _{i \in A^{\circ }} (\varvec{1}_{A}+ \varvec{1}_{i}) + (\lfloor \xi \rfloor - |A^{+}|) \varvec{1}_{A}, \end{aligned}$$

which is a nonnegative integer combination of vectors in \(B_{A}\). In the other case with \(|A^{+}| > |A^{-}|\), we have an alternative expression

$$\begin{aligned} z&= - \sum _{i \in A^{-}} \varvec{1}_{i} + \sum _{i \in A^{\circ }} (\varvec{1}_{A}+ \varvec{1}_{i}) + (\lfloor \xi \rfloor +1) \varvec{1}_{A} \\&= \sum _{i \in A^{-}} (\varvec{1}_{A} - \varvec{1}_{i}) + \sum _{i \in A^{\circ }} (\varvec{1}_{A}+ \varvec{1}_{i}) + (\lfloor \xi \rfloor + 1 - |A^{-}|) \varvec{1}_{A}, \end{aligned}$$

which is also a nonnegative integer combination of vectors in \(B_{A}\). This completes the proof of Proposition 5.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriguchi, S., Murota, K., Tamura, A. et al. Scaling, proximity, and optimization of integrally convex functions. Math. Program. 175, 119–154 (2019). https://doi.org/10.1007/s10107-018-1234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1234-z

Mathematics Subject Classification

Navigation