Abstract
A Schrödinger-type equation for a heavy quarkonium in terms of the dynamical quark mass is obtained in a quasi-particle approach by Llanes-Estrada and Cotanch. To observe the relationship between the obtained equation and the constituent quark (potential) model equation, we treat the dynamical quark mass by a constant parameter M and expand the equation in 1/M up to order (1/M). The equation reduces to that of the traditional nonrelativistic constituent quark model when a nonlocal interaction is neglected. We investigate the nonrelativistic model where the dynamical quark mass M in the Schrödinger-type equation is treated as a free parameter and call it the quasi-quark (QQ) model. To elucidate the role of the nonlocal interaction and to observe the reliability of the QQ model, we studied the charmonium S-wave states.
Similar content being viewed by others
Notes
For example, cf. Text book by Ynduráin [1].
To control the infrared divergence of \(\hat{v}(|k|)\), the limit \(\mu \rightarrow 0\) was taken after the integration was performed.
The integral term in Eq. (3.10) has a well-defined value in the singular integral sense, despite the logarithmic divergence on the straight line \(x=r\).
As another possible example of a physical quantity related to the wave function of the heavy quarkonium, a picture for the open flavor decays has been proposed [19].
References
F.J. Ynduráin, p201 in Quantum Chromodynamics An Introduction to the Theory of Quarks and Gluons. (Springer, Verlag, 1983)
F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84, 1102 (2000)
F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697, 303 (2002)
F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001)
S.R. Cotanch, Fizika B 13, 27 (2004)
F.J. Llanes-Estrada, S.R. Cotanch, A.P. Szczepaniak, E.S. Swanson, Phys. Rev. C 70, 035202 (2004)
A. Amer, A.. Le. Yaouanc, L. Oliver, O. Pène, J.-C. Raynal, Phys. Rev. Lett. 50, 87 (1983)
A.. Le. Yaouanc, L. Oliver, O. Pène, J.-C. Raynal, Phys. Rev. D 29, 1233 (1984)
A.. Le. Yaouanc, L. Oliver, S. Ono, O. Pène, J.-C. Raynal, Phys. Rev. D 31, 137 (1985)
S.L. Adler, A.C. Davis, Nucl. Phys. B 244, 469 (1984)
M. Hirata, Prog. Theor. Phys. 77, 939 (1987)
J.G. Valatin, Nuovo Cim. 7, 843 (1958)
N.N. Bogoliubov, Nuovo Cim. 7, 794 (1958)
J.G. Valatin, Nuovo Cim. 7, 843 (1958)
E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)
G.S. Bali, Phys. Rep. 343, 1 (2001)
T. Kawanai, S. Sasaki, Phys. Rev. Lett. 107, 091601 (2011)
P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
J.M. Torres-Rincon, F.J. Llanes-Estrada, Phys. Rev. Lett. 105, 022003 (2010)
L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955), p.140
W. Lucha, F.F. Schöberl, D. Gromes, Phys. Rep. 200(4), 127 (1991)
R. Barbieri, in Hadrons (Usual and Newly Discovered) in Gauge Theories; A Dream?. Weak and Electromagnetic Interactions at High Energies (Plenum Press, 1976)
R. Barbieri, R. Kögerler, Z. Kunszt, R. Gatto, Nucl. Phys. B 105, 125 (1976)
J. Bicudo Pedro, A. de Ribeiro, E.F.T. Josè, Phys. Rev. D 42, 1611 (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sakai, M., Hirano, M., Katō, K. et al. Nonrelativistic Heavy Quarkonium Model Descended from a Quasi-Particle Approach. Few-Body Syst 64, 2 (2023). https://doi.org/10.1007/s00601-022-01782-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00601-022-01782-w