Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An eigenvalue problem for a fully nonlinear elliptic equation with gradient constraint

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the problem of finding \(\lambda \in {\mathbb {R}}\) and a function \(u:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) that satisfy the PDE

$$\begin{aligned} \max \left\{ \lambda + F(D^2u) -f(x),H(Du)\right\} =0, \quad x\in {\mathbb {R}}^n. \end{aligned}$$

Here F is elliptic, positively homogeneous and superadditive, f is convex and superlinear, and H is typically assumed to be convex. Examples of this type of PDE arise in the theory of singular ergodic control. We show that there is a unique \(\lambda ^*\) for which the above equation has a solution u with appropriate growth as \(|x|\rightarrow \infty \). Moreover, associated to \(\lambda ^*\) is a convex solution \(u^*\) that has essentially bounded second derivatives, provided F is uniformly elliptic and H is uniformly convex. It is unknown whether or not \(u^*\) is unique up to an additive constant; however, we verify that this is the case when \(n=1\) or when FfH are “rotational.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S.N.: Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations. J. Differ. Equ. 246(7), 2958–2987 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman equations. With appendices by Maurizio Falcone and Pierpaolo Soravia. Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston (1997)

    Book  MATH  Google Scholar 

  3. Borkar, V., Budhiraja, A..: Ergodic control for constrained diffusions: characterization using HJB equations. SIAM J. Control Optim. 43(4), 1467–1492 (2004/05)

  4. Caffarelli, Luis A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L.A., Cabrè, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  6. Crandall, M.: Viscosity Solutions: A Primer. Viscosity Solutions and Applications. Lecture Notes in Math., vol. 1660. Springer, Berlin (1997)

    MATH  Google Scholar 

  7. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, L.C.: A second-order elliptic equation with gradient constraint. Commun. Partial Differ. Equ. 4(5), 555–572 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, Providence (2010)

    MATH  Google Scholar 

  11. Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Fleming, H., Soner, H.: Controlled Markov Processes and Viscosity Solutions. Stochastic Modeling and Applied Probability, vol. 25, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  14. Hynd, R.: The eigenvalue problem of singular ergodic control. Commun. Pure Appl. Math. 65(5), 649–682 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hynd, R., Mawi, H.: On Hamilton–Jacobi–Bellman equations with convex gradient constraints. Interfaces Free Bound. 18, 291–315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ishii, H., Koike, S.: Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Commun. Partial Differ. Equ. 8(4), 317–346 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korevaar, N.J.: Convex solutions to nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 32(4), 603–614 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kruk, L.: Optimal policies for \(n\)-dimensional singular stochastic control problems. II. The radially symmetric case. Ergodic control. SIAM J. Control Optim. 39(2), 635–659 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47(1), 75–108 (1983)

    MathSciNet  Google Scholar 

  20. Menaldi, J.-L., Robin, M., Taksar, M.: Singular ergodic control for multidimensional Gaussian processes. Math. Control Signals Syst. 5(1), 93–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Universitext. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  22. Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)

    Google Scholar 

  23. Soner, H.M., Shreve, S.: Regularity of the value function for a two-dimensional singular stochastic control problem. SIAM J. Control Optim. 27(4), 876–907 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Soner, H.M., Touzi, N.: Homogenization and asymptotics for small transaction costs. SIAM J. Control Optim. 51(4), 2893–2921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Trudinger, N.: Fully nonlinear, uniformly elliptic equations under natural structure conditions. Trans. Am. Math. Soc. 278(2), 751–769 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wiegner, M.: The \(C^{1,1}\)-character of solutions of second order elliptic equations with gradient constraint. Commun. Partial Differ. Equ. 6(3), 361–371 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Hynd.

Additional information

Communicated by N.Trudinger.

The author was partially supported by NSF Grant DMS-1301628.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hynd, R. An eigenvalue problem for a fully nonlinear elliptic equation with gradient constraint. Calc. Var. 56, 34 (2017). https://doi.org/10.1007/s00526-017-1115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1115-y

Mathematics Subject Classification

Navigation