Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

An innovative interval type-2 fuzzy approach for multi-scenario multi-project cash flow evaluation considering TODIM and critical chain with an application to energy sector

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Project management has been proven to be an effective tool to manage sophisticated activities. Various techniques of project management have played an essential role for successful project implementation in different areas. Managing projects, especially in a multi-project environment, involves a complex situation because of its distinguishing feature in which a number of projects are being executed simultaneously, that is, they are followed in parallel. Therefore, applying human resources will be more effective and more idle time will be eliminated as well. More so, it can enable people to share their lessons learned from one project to another. With respect to handling a number of projects at the same time by most firms, it is sophisticated for contractors to cope with financial issues of projects, which involve different project cash inflows and outflows. Thus, taking an accurate cash flow prediction into account for projects has been changed into a crucial matter for firms, and lack of this consideration may result in the failure of projects as well. Moreover, there is a desperate need for uncertainties to be addressed thoroughly regarding their vital role for suitable project management. With these in mind, an innovative approach is proposed in this paper to anticipate the cash flow of project by considering type-2 fuzzy extension of both critical chain project management (CCM) for project scheduling and TODIM (an acronym in Portuguese for interactive Multi-Criteria Decision Making) method for selecting the best scenario in a multi-project environment. Hence, type-2 fuzzy numbers are utilized in order to state uncertainties. Eventually, a real-world project in a petro-refinery firm is applied to indicate the capability of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adjei EAG, Fugar FDK, Adinyira E (2019) A review on appropriate tool to predict profitability of building projects using established significant cash flow factors. In: 14th international postgraduate research conference 2019: contemporary and future directions in the built environment, pp 38–44

  2. Al-Bahar JF, Crandall KC (1990) Systematic risk management approach for construction projects. J Constr Eng Manag 116(3):533–546

    Google Scholar 

  3. Balin A, Baraçli H (2017) A fuzzy multi-criteria decision making methodology based upon the interval type-2 fuzzy sets for evaluating renewable energy alternatives in Turkey. Technol Econ Dev Econ 23(5):742–763

    Google Scholar 

  4. Batselier J, Vanhoucke M (2017) Improving project forecast accuracy by integrating earned value management with exponential smoothing and reference class forecasting. Int J Project Manag 35:28–43

    Google Scholar 

  5. Camps JA (1996) Simple steps help minimize costs risks in project management. Oil Gas J 94(4):32–36

    Google Scholar 

  6. Castillo O, Amador-Angulo L, Castro JR, Garcia-Valdez M (2016) A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf Sci 354:257–274

    Google Scholar 

  7. Castillo O, Cervantes L, Soria J, Sanchez M, Castro JR (2016) A generalized type-2 fuzzy granular approach with applications to aerospace. Inf Sci 354:165–177

    Google Scholar 

  8. Celik E, Akyuz E (2018) An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: the case of ship loader. Ocean Eng 155:371–381

    Google Scholar 

  9. Celik E, Gumus AT, Alegoz M (2014) A trapezoidal type-2 fuzzy MCDM method to identify and evaluate critical success factors for humanitarian relief logistics management. J Intell Fuzzy Syst 27(6):2847–2855

    Google Scholar 

  10. Chaharsooghi SK, Seyfi Sariqaya M, Rahimnezhad F (2019) Optimization of project cash flow under uncertainty by genetic algorithm. Int J Ind Eng Manag Sci 6(1):24–37

    Google Scholar 

  11. Chapman CB, Ward S (1997) Project risk management: processes, techniques and insights. Wiley, New York

    MATH  Google Scholar 

  12. Chen T-Y, Chang C-H, Lu J-FR (2013) The extended QUALIFLEX method for multiple criteria decision analysis based on interval type- 2 fuzzy sets and applications to medical decision making. Eur J Oper Res 226(3):615–625

    MathSciNet  MATH  Google Scholar 

  13. Chen SM, Hong JA (2014) Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets and the TOPSIS method. IEEE Trans Syst Man Cybern Syst 44(12):1665–1673

    Google Scholar 

  14. Chen SM, Lee LW (2010) Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst Appl 37(4):2790–2798

    Google Scholar 

  15. Debnath J, Biswas A (2018) Assessment of occupational risks in construction sites using interval type-2 fuzzy analytic hierarchy process. In: Industry interactive innovations in science, engineering and technology. Springer, Singapore, pp 283–297

  16. Dereli T, Baykasoglu A, Altun K, Durmusoglu A, Türksen IB (2011) Industrial applications of type-2 fuzzy sets and systems: a concise review. Comput Ind 62(2):125–137

    Google Scholar 

  17. Dong JY, Wan SP (2016) Virtual enterprise partner selection integrating LINMAP and TOPSIS. J Oper Res Soc 67(10):1288–1308

    Google Scholar 

  18. Dorfeshan Y, Mousavi SM, Mohagheghi V, Vahdani B (2018) Selecting project-critical path by a new interval type-2 fuzzy decision methodology based on MULTIMOORA, MOOSRA and TPOP methods. Comput Ind Eng 120:160–178

    Google Scholar 

  19. Dorfeshan Y, Mousavi SM, Vahdani B, Siadat A (2019) Determining project characteristics and critical path by a new approach based on modified NWRT method and risk assessment under an interval type-2 fuzzy environment. Sci Iran 26(4):2579–2600

    Google Scholar 

  20. Ekhtiari M, Yadegari E, Sadidi G (2016) Ranking enterpreneurship main risks in non-profit financial funds by Todim technique under grey conditions (a case study in Iran). Econ Comput Econ Cybern Stud Res 50(3):319–336

    Google Scholar 

  21. Elbeltagi E, Ammar M, Sanad H, Kassab M (2016) Overall multiobjective optimization of construction projects scheduling using particle swarm. Eng Constr Archit Manag 23(3):265–282

    Google Scholar 

  22. Elghaish F, Abrishami S, Abu Samra S, Gaterell M, Hosseini MR, Wise R (2019) Cash flow system development framework within integrated project delivery (IPD) using BIM tools. Int J Constr Manag. https://doi.org/10.1080/15623599.2019.1573477

    Article  Google Scholar 

  23. Eshghi A, Mousavi SM, Mohagheghi V (2019) A new interval type-2 fuzzy approach for analyzing and monitoring the performance of megaprojects based on earned value analysis (with a case study). Neural Comput Appl 31:5109–5133

    Google Scholar 

  24. Facci AL, Ubertini S (2018) Meta-heuristic optimization for a high-detail smart management of complex energy systems. Energy Convers Manag 160:341–353

    Google Scholar 

  25. Ghorabaee MK, Amiri M, Sadaghiani JS, Goodarzi GH (2014) Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets. Int J Adv Manuf Technol 75(5–8):1115–1130

    Google Scholar 

  26. Ghorabaee MK, Zavadskas EK, Amiri M, Esmaeili A (2016) Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets. J Clean Prod 137:213–229

    Google Scholar 

  27. Goldratt EM (1997) Critical chain: a business novel. The North River Press, Great Barrington

    Google Scholar 

  28. Gomes LFAM (2009) An application of the TODIM method to the multicriteria rental evaluation of residential properties. Eur J Oper Res 193(1):204–211

    MATH  Google Scholar 

  29. Gonzalez CI, Melin P, Castro JR, Mendoza O, Castillo O (2017) General type-2 fuzzy edge detection in the preprocessing of a face recognition system. In: Melin P, Castillo O, Kacprzyk J (eds) Nature-inspired design of hybrid intelligent systems. Springer International Publishing, Berlin, pp 3–18

    Google Scholar 

  30. Gou X, Xu Z, Liao H (2016) Alternative queuing method for multiple criteria decision making with hybrid fuzzy and ranking information. Inf Sci 357:144–160

    Google Scholar 

  31. Guildford WS (1998) Practical risk assessment for project management. Int J Project Manag 16(2):130–131

    Google Scholar 

  32. Gul M, Celik E, Gumus AT, Guneri AF (2016) Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. Eur J Ind Eng 10(2):196–223

    Google Scholar 

  33. Haghighi MH, Mousavi SM, Mohagheghi V (2019) A new soft computing model based on linear assignment and linear programming technique for multidimensional analysis of preference with interval type-2 fuzzy sets. Appl Soft Comput 77:780–796

    Google Scholar 

  34. Hashemi ST, Kaur H (2017) A hybrid conceptual cost estimating model using ANN and GA for power plant projects. Neural Comput Appl 31:1–12

    Google Scholar 

  35. He Y, Zhang J, He Z (2019) Metaheuristic algorithms for multimode multiproject scheduling with the objective of positive cash flow balance. IEEE Access 7:157427–157436

    Google Scholar 

  36. Hu J, Zhang Y, Chen X, Liu Y (2013) Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number. Knowl-Based Syst 43:21–29

    Google Scholar 

  37. Jo SH, Lee EB, Pyo KY (2018) Integrating a procurement management process into critical chain project management (CCPM): a case-study on oil and gas projects, the piping process. Sustainability 10(6):1817

    Google Scholar 

  38. Kaka A, Price AD (1991) Net cash flow models: are they reliable? Constr Manag Econ 9(3):291–308

    Google Scholar 

  39. Kilic M, Kaya İ (2015) Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Appl Soft Comput 27:399–410

    Google Scholar 

  40. Le T, Vu T, Nguyen V (2020) Identifying factors influencing on the cash flow of construction companies: evidence from Vietnam stock exchange. Manag Sci Lett 10(1):255–264

    Google Scholar 

  41. Leach LP (2014) Critical chain project management. Artech House, Norwood

    Google Scholar 

  42. Liu D, Qi X, Li M, Zhu W, Zhang L, Faiz MA, Cui S (2019) A resilience evaluation method for a combined regional agricultural water and soil resource system based on Weighted Mahalanobis distance and a Gray-TOPSIS model. J Clean Prod 229:667–679

    Google Scholar 

  43. Liu HC, Hu YP, Wang JJ, Sun M (2018) Failure mode and effects analysis using two-dimensional uncertain linguistic variables and alternative queuing method. IEEE Trans Reliab 68(2):554–565

    Google Scholar 

  44. Liu SS, Wang CJ (2010) Profit optimization for multiproject scheduling problems considering cash flow. J Constr Eng Manag 136(12):1268–1278

    Google Scholar 

  45. Lova A, Tormos P (2001) Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling. Ann Oper Res 102(1–4):263–286

    MathSciNet  MATH  Google Scholar 

  46. Maravas A, Pantouvakis JP (2012) Project cash flow analysis in the presence of uncertainty in activity duration and cost. Int J Project Manag 30(3):374–384

    Google Scholar 

  47. Mazlum M, Güneri AF (2015) CPM, PERT and project management with fuzzy logic technique and implementation on a business. Proc-Soc Behav Sci 210:348–357

    Google Scholar 

  48. Mendel JM (2003) Type-2 fuzzy sets: some questions and answers, IEEE connections, newsletter of the IEEE. Neural Netw Soc 1:10–13

    Google Scholar 

  49. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Google Scholar 

  50. Mohagheghi V, Mousavi SM, Vahdani B (2017) An assessment method for project cash flow under interval-valued fuzzy environment. J Optim Ind Eng 10(22):73–80

    Google Scholar 

  51. Mohagheghi V, Mousavi SM, Vahdani B (2017) Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Comput Appl 28(11):3393–3411

    Google Scholar 

  52. Mohagheghi V, Mousavi SM, Vahdani B, Siadat A (2017) A mathematical modeling approach for high and new technology-project portfolio selection under uncertain environments. J Intell Fuzzy Syst 32(6):4069–4079

    MATH  Google Scholar 

  53. Mousakhani S, Nazari-Shirkouhi S, Bozorgi-Amiri A (2017) A novel interval type-2 fuzzy evaluation model based group decision analysis for green supplier selection problems: a case study of battery industry. J Clean Prod 168:205–218

    Google Scholar 

  54. Moradi N, Mousavi SM, Vahdani B (2018) An interval type-2 fuzzy model for project-earned value analysis under uncertainty. J Mult-Valued Logic Soft Comput 30:79–103

    MATH  Google Scholar 

  55. Ontiveros-Robles E, Melin P, Castillo O (2018) Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1):175–201

    MathSciNet  MATH  Google Scholar 

  56. Oztaysi B (2015) A group decision making approach using project selection. J Mult Valued Logic Soft Comput 24(5):1–15

    MathSciNet  Google Scholar 

  57. Pate-Cornell ME, Tagaras G, Eisenhardt KM (1990) Dynamic optimization of cash flow management decisions: a stochastic model. IEEE Trans Eng Manag 37(3):203–212

    Google Scholar 

  58. Purnus A, Bodea CN (2015) Financial management of the construction projects: a proposed cash flow analysis model at project portfolio level. Organ Technol Manag Constr Int J 7(1):1217–1227

    Google Scholar 

  59. Roghanian E, Alipour M, Rezaei M (2017) An improved fuzzy critical chain approach in order to face uncertainty in project scheduling. Int J Constr Manag. https://doi.org/10.1080/15623599.2016.1225327

    Article  Google Scholar 

  60. Şengül Ü, Eren M, Shiraz SE, Gezder V, Şengül AB (2015) Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew Energy 75:617–625

    Google Scholar 

  61. Shash AA, Qarra AA (2018) Cash flow management of construction projects in Saudi Arabia. Project Manag J 49(5):48–63

    Google Scholar 

  62. Simister SJ (1994) Usage and benefits of project risk analysis and management. Int J Project Manag 12(1):5–10

    Google Scholar 

  63. Su Y, Lucko G, Thompson RC (2016) Evaluating performance of critical chain project management to mitigate delays based on different schedule network complexities. In: IEEE 2016 winter simulation conference (WSC), pp 3314–3324

  64. Tabei SMA, Bagherpour M, Mahmoudi A (2019) Application of fuzzy modelling to predict construction projects cash flow. Period Polytech Civ Eng 63(2):647–659

    Google Scholar 

  65. Turner R (2016) Gower handbook of project management. Routledge, London

    Google Scholar 

  66. Wei G, Alsaadi FE, Hayat T, Alsaedi A (2017) A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. Int J Fuzzy Syst 19(3):607–614

    MathSciNet  Google Scholar 

  67. Wu D, Mendel JM (2007) Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. IEEE Trans Fuzzy Syst 15(6):1145–1161

    Google Scholar 

  68. Yu MC, Dang VL, Yeh HC (2017) Measuring cash flow and overdraft for fuzzy project networks with overlapping activities. J Civ Eng Manag 23(4):487–498

    Google Scholar 

  69. Zadeh LA (1974) Fuzzy logic and its application to approximate reasoning. In: IFIP congress, vol 591

  70. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    MathSciNet  MATH  Google Scholar 

  71. Zarandi MH, Yazdi EH (2008) A type-2 fuzzy rule-based expert system model for portfolio selection. In: 11th joint international conference on information sciences. Atlantis Press

  72. Zayed T, Amer M, Pan J (2008) Assessing risk and uncertainty inherent in Chinese highway projects using AHP. Int J Project Manag 26(4):408–419

    Google Scholar 

  73. Zhang J, Elmaghraby SE (2014) The relevance of the “alphorn of uncertainty” to the financial management of projects under uncertainty. Eur J Oper Res 238(1):65–76

    Google Scholar 

  74. Zhang Z, Zhang S (2013) A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Appl Math Model 37(7):4948–4971

    MathSciNet  MATH  Google Scholar 

  75. Zolfaghari S, Mousavi SM (2018) Construction-project risk assessment by a new decision model based on De-Novo multi-approaches analysis and hesitant fuzzy sets under uncertainty. J Intell Fuzzy Syst 35(1):639–649

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous referees for their valuable comments on the initial version of this study for the improvements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Ali Mirnezami or Seyed Meysam Mousavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

T2FSs that first were introduced by Zadeh [70] are development of type-1 fuzzy sets. These sets have turned out to be more appropriate compared with T1FSs in light of their importance to cope with uncertainties [6,7,8, 16, 29]. \( \tilde{\tilde{A}} \) can be denoted as follows [49]:

$$ \tilde{\tilde{A}} = \int_{x \in X} \int_{{u \in J_{X} }} \mu_{{\tilde{\tilde{A}}}} \left( {x, u} \right)/\left( {x, u} \right) $$
(63)

where \( J_{X} \subseteq \left[ {0,\; 1} \right] \) and \( \int \int \) represents union over all admissible \( x \) and \( u \).

An IT2FS \( \tilde{\tilde{A}} \) that is taken into account as a specific kind of T2FS, is shown as [49]:

$$ \tilde{\tilde{A}} = \int_{x \in X} \int_{{u \in J_{X} }} 1/\left( {x, u} \right) $$
(64)

where \( J_{X} \subseteq \left[ {0, \;1} \right] \).

TIT2FN is a particular type of IT2FN, whose upper membership function (UMF) and lower membership function (LMF) are determined as trapezoidal fuzzy numbers. These numbers are indicated as [14]:

$$ \begin{aligned} A = \left( {A^{\text{U}} , A^{\text{L}} } \right) = \left( {\left( {a_{1}^{\text{U}} , a_{2}^{\text{U}} , a_{3}^{\text{U}} , a_{4}^{\text{U}} ; H_{1} \left( {A^{\text{U}} } \right), H_{2} \left( {A^{\text{U}} } \right)} \right),} \right. \hfill \\ \left. {\left( {a_{1}^{\text{L}} , a_{2}^{\text{L}} , a_{3}^{\text{L}} , a_{4}^{\text{L}} ; H_{1} \left( {A^{\text{L}} } \right), H_{2} \left( {A^{\text{L}} } \right)} \right)} \right) \hfill \\ \end{aligned} $$
(65)

where \( A^{\text{U}} \) and \( A^{\text{L}} \) imply the UMF and LMF of \( A \), and \( H_{j} \left( {A^{\text{U}} } \right) \) and \( H_{j} \left( {A^{\text{L}} } \right) \) \( H_{j} \left( {A^{\text{U}} } \right) \in \left[ {0,\; 1} \right], H_{j} \left( {A^{\text{L}} } \right) \in \left[ {0, \;1} \right], \;j = 1, \;2 \) express the values of membership of the related factors \( a_{j + 1}^{\text{L}} \) and \( a_{j + 1}^{\text{U}} \), respectively. The membership function of a TIT2FS can be illustrated in Fig. 6.

Fig. 6
figure 6

Membership function of a trapezoidal IT2FS [14]

If \( D_{1} \) and \( D_{2} \) are considered as two trapezoidal interval type-2 fuzzy numbers then:

$$ \begin{aligned} D_{1} = \left( {D_{1}^{\text{U}} , D_{1}^{\text{L}} } \right) = \left( {\left( {d_{11}^{\text{U}} , d_{12}^{\text{U}} , d_{13}^{\text{U}} , d_{14}^{\text{U}} ; H_{1} \left( {D_{1}^{\text{U}} } \right), H_{2} \left( {D_{1}^{\text{U}} } \right)} \right),} \right. \hfill \\ \left. {\left( {d_{11}^{\text{L}} , d_{12}^{\text{L}} , d_{13}^{\text{L}} , d_{14}^{\text{L}} ; H_{1} \left( {D_{1}^{\text{L}} } \right), H_{2} \left( {D_{1}^{\text{L}} } \right)} \right)} \right) \hfill \\ \end{aligned} $$
(66)
$$ \begin{aligned} D_{2} = \left( {D_{2}^{\text{U}} , D_{2}^{\text{L}} } \right) = \left( {\left( {d_{21}^{\text{U}} , d_{22}^{\text{U}} , d_{23}^{\text{U}} , d_{24}^{\text{U}} ; H_{1} \left( {D_{2}^{\text{U}} } \right), H_{2} \left( {D_{2}^{\text{U}} } \right)} \right),} \right. \hfill \\ \left. {\left( {d_{21}^{\text{L}} , d_{22}^{\text{L}} , d_{23}^{\text{L}} , d_{24}^{\text{L}} ; H_{1} \left( {D_{2}^{\text{L}} } \right), H_{2} \left( {D_{2}^{\text{L}} } \right)} \right)} \right) \hfill \\ \end{aligned} $$
(67)

The algebraic operations of them are based on [36] and can be determined as:

The addition operation between the aforementioned numbers can be defined as [36]:

$$ \begin{aligned} \widetilde{{\widetilde{D}}}_{1} \oplus \widetilde{{\widetilde{D}}}_{2} & = \left( {\widetilde{D}_{1}^{\text{U}} , \widetilde{D}_{1}^{\text{L}} } \right) + \left( {\widetilde{D}_{2}^{\text{U}} , \widetilde{D}_{2}^{\text{L}} } \right) \\ & = \left( {\left( {d_{11}^{\text{U}} + d_{21}^{\text{U}} , d_{12}^{\text{U}} + d_{22}^{\text{U}} , d_{13}^{\text{U}} + d_{23}^{\text{U}} , d_{14}^{\text{U}} + d_{24}^{\text{U}} ;} \right.} \right.\left( {\left( {H_{1} \left( {\widetilde{D}_{1}^{\text{U}} } \right)} \right.} \right. \\ & \quad \left. { + \left( {H_{1} \left( {\widetilde{D}_{2}^{\text{U}} } \right)} \right) - H_{1} \left( {\widetilde{D}_{1}^{\text{U}} } \right)* H_{1} \left( {\widetilde{D}_{2}^{\text{U}} } \right), \left( {H_{2} \left( {\widetilde{D}_{1}^{\text{U}} } \right)} \right) + H_{2} \left( {\widetilde{D}_{2}^{\text{U}} } \right)} \right) - H_{2} \left( {\widetilde{D}_{1}^{\text{U}} } \right) \\ & \quad \left. {*H_{2} \left( {\widetilde{D}_{2}^{\text{U}} } \right)} \right), d_{11}^{\text{L}} + d_{21}^{\text{L}} , d_{12}^{\text{L}} + d_{22}^{\text{L}} , d_{13}^{\text{L}} + d_{23}^{\text{L}} , d_{14}^{\text{L}} + d_{24}^{\text{L}} ;\left( {H_{1} \left( {\widetilde{D}_{1}^{\text{L}} } \right)} \right) \\ & \quad \left. {\left. { + H_{1} \left( {\widetilde{D}_{2}^{\text{L}} } \right) - H_{1} \left( {\widetilde{D}_{1}^{\text{L}} } \right)* H_{1} \left( {\widetilde{D}_{2}^{\text{L}} } \right), \left( {H_{2} \left( {\widetilde{D}_{1}^{\text{L}} } \right)} \right) + H_{2} \left( {\widetilde{D}_{2}^{\text{L}} } \right)) - H_{2} \left( {\widetilde{D}_{1}^{\text{L}} } \right)*H_{2} \left( {\widetilde{D}_{2}^{\text{L}} } \right)} \right)} \right). \\ \end{aligned} $$
(68)

The subtraction operation can be defined as [36]:

$$ \begin{aligned} \widetilde{{\widetilde{D}}}_{1} { \ominus } \widetilde{{\widetilde{D}}}_{2} & = \left( {\widetilde{D}_{1}^{\text{U}} , \widetilde{D}_{1}^{\text{L}} } \right){ \ominus }\left( {\widetilde{D}_{2}^{\text{U}} , \widetilde{D}_{2}^{\text{L}} } \right) \\ & = \left( {\left( {d_{11}^{\text{U}} - d_{24}^{\text{U}} , d_{12}^{\text{U}} - d_{23}^{\text{U}} , d_{13}^{\text{U}} - d_{22}^{\text{U}} , d_{14}^{\text{U}} - d_{21}^{\text{U}} ;} \right.} \right.\left( {\left( {H_{1} \left( {\widetilde{D}_{1}^{\text{U}} } \right)} \right.} \right. \\ & \quad \left. { + \left( {H_{1} \left( {\widetilde{D}_{2}^{\text{U}} } \right)} \right) - H_{1} \left( {\widetilde{D}_{1}^{\text{U}} } \right)* H_{1} \left( {\widetilde{D}_{2}^{\text{U}} } \right), \left( {H_{2} \left( {\widetilde{D}_{1}^{\text{U}} } \right)} \right) + H_{2} \left( {\widetilde{D}_{2}^{\text{U}} } \right)} \right) - H_{2} \left( {\widetilde{D}_{1}^{\text{U}} } \right) \\ & \quad \left. {* H_{2} \left( {\widetilde{D}_{2}^{\text{U}} } \right)} \right), d_{11}^{\text{L}} - d_{24}^{\text{L}} , d_{12}^{\text{L}} - d_{23}^{\text{L}} , d_{13}^{\text{L}} - d_{22}^{\text{L}} , d_{14}^{\text{L}} - d_{21}^{\text{L}} ;\left( {H_{1} \left( {\widetilde{D}_{1}^{\text{L}} } \right)} \right) \\ & \quad \left. {\left. {\left. {\left. { + H_{1} \left( {\widetilde{D}_{2}^{\text{L}} } \right)} \right) - H_{1} \left( {\widetilde{D}_{1}^{\text{L}} } \right)* H_{1} \left( {\widetilde{D}_{2}^{\text{L}} } \right), \left( {H_{2} \left( {\widetilde{D}_{1}^{\text{L}} } \right)} \right) + H_{2} \left( {\widetilde{D}_{2}^{\text{L}} } \right)} \right) - H_{2} \left( {\widetilde{D}_{1}^{\text{L}} } \right)* H_{2} \left( {\widetilde{D}_{2}^{\text{L}} } \right)} \right)} \right). \\ \end{aligned} $$
(69)

The multiplication operation can be defined as [36]:

$$ \begin{aligned} \widetilde{{\widetilde{D}}}_{1} \otimes \widetilde{{\widetilde{D}}}_{2} & = \left( {\widetilde{D}_{1}^{\text{U}} , \widetilde{D}_{1}^{\text{L}} } \right) \otimes \left( {\widetilde{D}_{2}^{\text{U}} , \widetilde{D}_{2}^{\text{L}} } \right) \\ & = \left( {\left( {Y_{11}^{\text{U}} , Y_{12}^{\text{U}} , Y_{13}^{\text{U}} , Y_{14}^{\text{U}} ;{ \hbox{min} }\left( {H_{1} \left( {\tilde{d}_{1}^{\text{U}} } \right), H_{1} \left( {\tilde{d}_{2}^{\text{U}} } \right)} \right),\hbox{min} \left( { H_{2} \left( {\tilde{d}_{1}^{\text{U}} } \right), H_{2} \left( {\tilde{d}_{2}^{\text{U}} } \right)} \right)} \right)} \right., \\ & \quad \left. {Y_{11}^{\text{L}} , Y_{12}^{\text{L}} , Y_{13}^{\text{L}} , Y_{14}^{\text{L}} ;\hbox{min} \left( {H_{1} \left( {\tilde{d}_{1}^{\text{L}} } \right), H_{1} \left( {\tilde{d}_{2}^{\text{L}} } \right)} \right), \hbox{min} \left( {H_{2} \left( {\tilde{d}_{1}^{\text{L}} } \right), H_{2} \left( {\tilde{d}_{2}^{\text{L}} } \right)} \right)} \right). \\ {\text{where}}\;Y_{i}^{T} & = \left\{ {\begin{array}{*{20}l} {\hbox{min} \left( {d_{1i}^{T} d_{2i}^{T} , d_{1i}^{T} d_{{2\left( {5 - i} \right)}}^{T} , d_{{1\left( {5 - i} \right)}}^{T} d_{2i}^{T} , d_{{1\left( {5 - i} \right)}}^{T} d_{{2\left( {5 - i} \right)}}^{T} } \right) } \hfill & {{\text{if}}\;i = 1, \;2\quad T \in \left\{ {U, L} \right\}} \hfill \\ {\hbox{max} \left( {d_{1i}^{T} d_{2i}^{T} , d_{1i}^{T} d_{{2\left( {5 - i} \right)}}^{T} , d_{{1\left( {5 - i} \right)}}^{T} d_{2i}^{T} , d_{{1\left( {5 - i} \right)}}^{T} d_{{2\left( {5 - i} \right)}}^{T} } \right) } \hfill & {{\text{if}}\;i = 3, \;4 \quad T \in \left\{ {U, L} \right\}} \hfill \\ \end{array} } \right. \\ \end{aligned} $$
(70)

The above-mentioned operation between a crisp value \( \beta \) and \( \widetilde{{\widetilde{D}}}_{1} \) can be defined as [36]:

$$ \begin{aligned} \beta \widetilde{{\widetilde{D}}}_{1} & = \left[ {\left( {\left( {\beta d_{11}^{\text{U}} ,\beta d_{12}^{\text{U}} ,\beta d_{13}^{\text{U}} , \beta d_{14}^{\text{U}} ;1 - \left( {1 - H_{1} \left( {\tilde{d}_{1}^{\text{U}} } \right)} \right)^{\beta } , 1 - \left( {1 - H_{2} \left( {\tilde{d}_{1}^{\text{U}} } \right)} \right)^{\beta } } \right),} \right.} \right. \\ & \quad \left. {\left( {\beta d_{11}^{\text{L}} ,\beta d_{12}^{\text{L}} ,\beta d_{13}^{\text{L}} , \beta d_{14}^{\text{L}} ; 1 - \left( {1 - H_{1} \left( {\tilde{d}_{1}^{\text{L}} } \right)} \right)^{\beta } ,\left( {1 - \left( {1 - H_{2} \left( {\tilde{d}_{1}^{\text{L}} } \right)} \right)^{\beta } } \right)} \right)} \right] \\ \end{aligned} $$
(71)

and

$$ \begin{aligned} \widetilde{{\widetilde{D}}}_{1}^{\beta } & = \left[ {\left( {\left( {d_{11}^{\text{U}} } \right)^{\beta } , \left( {d_{12}^{\text{U}} } \right)^{\beta } , \left( {d_{13}^{\text{U}} } \right)^{\beta } , \left( {d_{14}^{\text{U}} } \right)^{\beta } ;\left( {H_{1} \left( {\tilde{d}_{1}^{\text{U}} } \right)} \right)^{\beta } , \left( {H_{2} \left( {\tilde{d}_{1}^{\text{U}} } \right)} \right)^{\beta } } \right),} \right. \\ & \quad \left. {\left( { \left( {d_{11}^{\text{L}} } \right)^{\beta } , \left( {d_{12}^{\text{L}} } \right)^{\beta } , \left( {d_{13}^{\text{L}} } \right)^{\beta } , \left( {d_{14}^{\text{L}} } \right)^{\beta } ; \left( {H_{1} \left( {\tilde{d}_{1}^{\text{L}} } \right)} \right)^{\beta } , \left( {H_{2} \left( {\tilde{d}_{1}^{\text{L}} } \right)} \right)^{\beta } } \right)} \right] \\ \end{aligned} $$
(72)

The division operation can be defined as follows [25]:

$$ \begin{aligned} D_{1} { \oslash } D_{2} & = \left( {D_{1}^{\text{U}} , D_{1}^{\text{L}} } \right){ \oslash } \left( {D_{2}^{\text{U}} , D_{2}^{\text{L}} } \right) \\ & = \left( {\left( {Y_{11}^{\text{U}} , Y_{12}^{\text{U}} , Y_{13}^{\text{U}} , Y_{14}^{\text{U}} ;\hbox{min} \left( {H_{1} \left( {D_{1}^{\text{U}} } \right), H_{1} \left( {D_{2}^{\text{U}} } \right)} \right),\hbox{min} \left( {H_{2} \left( {D_{1}^{\text{U}} } \right), H_{2} \left( {D_{2}^{\text{U}} } \right)} \right)} \right),} \right. \\ & \quad \left. {\left( {Y_{11}^{\text{L}} , Y_{12}^{\text{L}} , Y_{13}^{\text{L}} , Y_{14}^{\text{L}} ;\hbox{min} \left( {H_{1} \left( {D_{1}^{\text{L}} } \right), H_{1} \left( {D_{2}^{\text{L}} } \right)} \right), { \hbox{min} } \left( {H_{2} \left( {D_{1}^{\text{L}} } \right), H_{2} \left( {D_{2}^{\text{L}} } \right)} \right)} \right)} \right) \\ & \quad {\text{where}}\;Y_{1i}^{T} = \hbox{min} \left( {\frac{{d_{1i}^{T} }}{{d_{2i}^{T} }},\frac{{d_{1i}^{T} }}{{d_{{2\left( {5 - i} \right)}}^{T} }},\frac{{d_{{1\left( {5 - i} \right)}}^{T} }}{{d_{2i}^{T} }},\frac{{d_{{1\left( {5 - i} \right)}}^{T} }}{{d_{{2\left( {5 - i} \right)}}^{T} }}} \right), \quad T \in \left\{ {U, L} \right\},\quad i \in \left\{ {1, 2} \right\} \\ x_{1j}^{T} & = { \hbox{max} }\left( {\frac{{d_{{1\left( {5 - j} \right)}}^{T} }}{{d_{{2\left( {5 - j} \right)}}^{T} }},\frac{{d_{{1\left( {5 - j} \right)}}^{T} }}{{d_{2j}^{T} }},\frac{{d_{1j}^{T} }}{{d_{{2\left( {5 - j} \right)}}^{T} }},\frac{{d_{1j}^{T} }}{{d_{2j}^{T} }}} \right), \quad T \in \left\{ {U, L} \right\}, \quad j \in \left\{ {3, 4} \right\} \\ \end{aligned} $$
(73)

Euclidean distance between them can be defined as [74]:

$$ d\left( {D_{1} , D_{2} } \right) = \sqrt {\mathop \sum \limits_{b = 1}^{4} \left( {d_{1b}^{\text{U}} - d_{2b}^{\text{U}} } \right)^{2} + \mathop \sum \limits_{b = 1}^{4} \left( {d_{1b}^{\text{L}} - d_{2b}^{\text{L}} } \right)^{2} + \mathop \sum \limits_{b = 1}^{2} \left( {H_{b} \left( {D_{1}^{\text{U}} } \right) - H_{b} \left( {D_{2}^{\text{U}} } \right)} \right)^{2} + \mathop \sum \limits_{b = 1}^{2} \left( {H_{b} \left( {D_{1}^{\text{L}} } \right) - H_{b} \left( {D_{2}^{\text{L}} } \right)} \right)^{2} } $$
(74)

where \( b \) indicates number of components upper, lower, and membership degree of trapezoidal interval type-2 fuzzy number.

The expected value of \( D \) as a trapezoidal interval type-2 fuzzy number can be defined as follows [36]:

$$ E\left( D \right) = \frac{1}{2}\left( {\frac{1}{4}\mathop \sum \limits_{i = 1}^{4} \left( {d_{i}^{\text{L}} + d_{i}^{\text{U}} } \right)} \right) \times \frac{1}{4}\left( {\mathop \sum \limits_{i = 1}^{2} \left( {H_{i} \left( {D^{\text{L}} } \right) + H_{i} \left( {D^{\text{U}} } \right)} \right)} \right) $$
(75)

It is believed that by taking \( D_{1} \) and \( D_{2} \) into account as a trapezoidal interval type-2 fuzzy number, if and only if \( E\left( {D_{1} } \right) > E\left( {D_{2} } \right) \) then \( D_{1} > D_{2} \)

\( D_{s} \) and \( D_{t} \) are considered to be as two trapezoidal IT2FN below [36]:

$$ \begin{aligned} D_{s} = \left( {D_{s}^{\text{U}} , D_{s}^{\text{L}} } \right) = \left( {\left( {d_{s1}^{\text{U}} , d_{s2}^{\text{U}} , d_{s3}^{\text{U}} , d_{s4}^{\text{U}} ; H_{1} \left( {D_{s}^{\text{U}} } \right), H_{2} \left( {D_{s}^{\text{U}} } \right)} \right),} \right. \hfill \\ \left. {\left( {d_{s1}^{\text{L}} , d_{s2}^{\text{L}} , d_{s3}^{\text{L}} , d_{s4}^{\text{L}} ; H_{1} \left( {D_{s}^{\text{L}} } \right), H_{2} \left( {D_{s}^{\text{L}} } \right)} \right)} \right) \hfill \\ \end{aligned} $$
(76)

and

$$ \begin{aligned} D_{t} = \left( {D_{t}^{\text{U}} , D_{t}^{\text{L}} } \right) = \left( {\left( {d_{t1}^{\text{U}} , d_{t2}^{\text{U}} , d_{t3}^{\text{U}} , d_{t4}^{\text{U}} ; H_{1} \left( {D_{t}^{\text{U}} } \right), H_{2} \left( {D_{t}^{\text{U}} } \right)} \right),} \right. \hfill \\ \left. {\left( {d_{t1}^{\text{L}} , d_{t2}^{\text{L}} , d_{t3}^{\text{L}} , d_{t4}^{\text{L}} ; H_{1} \left( {D_{t}^{\text{L}} } \right), H_{2} \left( {D_{t}^{\text{L}} } \right)} \right)} \right) \hfill \\ \end{aligned} $$
(77)

Let

$$ Y = \frac{{\mathop \sum \nolimits_{{T \in \left\{ {L, U} \right\}}} \left( {\left( {d_{s3}^{T} + d_{s4}^{T} } \right) - \left( {d_{t1}^{T} + d_{t2}^{T} } \right)} \right) + \mathop \sum \nolimits_{k = 1}^{2} \left( {\hbox{max} \left( {H_{k} \left( {D_{s}^{\text{U}} } \right) - H_{k} \left( {D_{t}^{\text{U}} } \right), 0} \right) + \hbox{max} \left( {H_{k} \left( {D_{s}^{\text{L}} } \right) - H_{k} \left( {D_{t}^{\text{L}} } \right), 0} \right)} \right)}}{{\mathop \sum \nolimits_{k = 1}^{4} {\text{len}} \left( {v_{k} } \right) + \mathop \sum \nolimits_{k = 1}^{2} \left| {H_{k} \left( {D_{s}^{\text{U}} } \right) - H_{k} \left( {D_{t}^{\text{U}} } \right)} \right| + \mathop \sum \nolimits_{k = 1}^{2} \left| {H_{k} \left( {D_{s}^{\text{L}} } \right) - H_{k} \left( {D_{t}^{\text{L}} } \right)} \right|}} $$
(78)

where \( {\text{len}} \left( {v_{1} } \right) = d_{s4}^{\text{L}} + d_{s3}^{\text{L}} - d_{s1}^{\text{L}} - d_{s2}^{\text{L}} , \) \( {\text{len}} \left( {v_{2} } \right) = d_{s4}^{\text{U}} + d_{s3}^{\text{U}} - d_{s1}^{\text{U}} - d_{s2}^{\text{U}} , \) \( {\text{len}} \left( {v_{3} } \right) = d_{t4}^{\text{L}} + d_{t3}^{\text{L}} - d_{t1}^{\text{L}} - d_{t2}^{\text{L}} , \) \( {\text{len}} \left( {v_{4} } \right) = d_{t4}^{\text{U}} + d_{t3}^{\text{U}} - d_{t1}^{\text{U}} - d_{t2}^{\text{U}} \), respectively.

Thus, the possibility degree of \( D_{s} \) over \( D_{t} \) will be as follows [36]:

$$ p\left( {D_{s} \ge D_{t} } \right) = { \hbox{min} }\left( {\hbox{max} \left( {Y,0} \right),1} \right) $$
(79)

In accordance with the above-mentioned equations, if \( p\left( {D_{s} \ge D_{t} } \right) < 0.5 \), then \( D_{s} < D_{t} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirnezami, S.A., Mousavi, S.M. & Mohagheghi, V. An innovative interval type-2 fuzzy approach for multi-scenario multi-project cash flow evaluation considering TODIM and critical chain with an application to energy sector. Neural Comput & Applic 33, 2263–2284 (2021). https://doi.org/10.1007/s00521-020-05095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05095-z

Keywords