Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A single retinal circuit model for multiple computations

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Vision is dependent on extracting intricate features of the visual information from the outside world, and complex visual computations begin to take place as soon as at the retinal level. In multiple studies on salamander retinas, the responses of a subtype of retinal ganglion cells, i.e., fast/biphasic-OFF ganglion cells, have been shown to be able to realize multiple functions, such as the segregation of a moving object from its background, motion anticipation, and rapid encoding of the spatial features of a new visual scene. For each of these visual functions, modeling approaches using extended linear–nonlinear cascade models suggest specific preceding retinal circuitries merging onto fast/biphasic-OFF ganglion cells. However, whether multiple visual functions can be accommodated together in a certain retinal circuitry and how specific mechanisms for each visual function interact with each other have not been investigated. Here, we propose a physiologically consistent, detailed computational model of the retinal circuit based on the spatiotemporal dynamics and connections of each class of retinal neurons to implement object motion sensitivity, motion anticipation, and rapid coding in the same circuit. Simulations suggest that multiple computations can be accommodated together, thereby implying that the fast/biphasic-OFF ganglion cell has potential to output a train of spikes carrying multiple pieces of information on distinct features of the visual stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashmore JF, Copenhagen DR (1980) Different postsynaptic events in two types of retinal bipolar cell. Nature 288:84–86

    Article  CAS  PubMed  Google Scholar 

  • Baccus SA (2007) Timing and computation in inner retinal circuitry. Annu Rev Physiol 69:271–290

    Article  CAS  PubMed  Google Scholar 

  • Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. Neuron 36(5):909–919

    Article  CAS  PubMed  Google Scholar 

  • Baccus SA, Ölveczky BP, Manu M, Meister M (2008) A retinal circuit that computes object motion. J Neurosci 28:6807–6817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baden T, Berens P, Franke K, Rosón MR, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol (Lond) 178:477–504

    Article  CAS  Google Scholar 

  • Baylor DA, Fettiplace R (1977) Kinetics of synaptic transfer from receptors to ganglion cells in turtle retina. J Physiol (Lond) 271:425–448

    Article  CAS  Google Scholar 

  • Baylor DA, Fuortes MG, O’Bryan PM (1971) Receptive fields of cones in the retina of the turtle. J Physiol (Lond) 214:265–294

    Article  CAS  Google Scholar 

  • Berry MJ 2nd, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398:334–338

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SA, Volgyi B (2009) The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10:495–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brivanlou IH, Warland DK, Meister M (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20:527–539

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt DA (2001) Light adaptation and contrast in the outer retina. Prog Brain Res 131:407–418

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt DA (2011) Contrast processing by ON and OFF bipolar cells. Vis Neurosci 28:69–75

    Article  PubMed  Google Scholar 

  • Burkhardt DA, Fahey PK, Sikora MA (2007) Retinal bipolar cells: temporal filtering of signals from cone photoreceptors. Vis Neurosci 24:765–774

    Article  PubMed  Google Scholar 

  • Chase AM, Young ED (2007) First-spike latency information in single neurons increases when referenced to population onset. Proc Natl Acad Sci USA 104(12):5175–5180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen EY, Marre O, Fisher C, Schwartz G, Levy J, da Silveira RA, Berry MJ (2013) Alert response to motion onset in the retina. J Neurosci 33(1):120–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12:199–213

    Article  CAS  PubMed  Google Scholar 

  • Cook JE, Becker DL (1995) Gap junctions in the vertebrate retina. Microsc Res Tech 31:408–419

    Article  CAS  PubMed  Google Scholar 

  • Crevier DW, Meister M (1998) Synchronous period-doubling in flicker vision of salamander and man. J Neurophysiol 79:1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Dacey DM (1999) Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res 18:737–763

    Article  CAS  PubMed  Google Scholar 

  • Dacheux RF, Raviola E (1982) Horizontal cells in the retina of the rabbit. J Neurosci 2:1486–1493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dacheux RF, Raviola E (1986) The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci 6:331–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Vries SE, Baccus SA, Meister M (2011) The projective field of a retinal amacrine cell. J Neurosci 31:8595–8604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahey PK, Burkhardt DA (2003) Center-surround organization in bipolar cells: symmetry for opposing contrasts. Vis Neurosci 20:1–10

    Article  PubMed  Google Scholar 

  • Freed MA, Sterling P (1988) The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. J Neurosci 8:2303–2320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudiano P (1994) Simulations of X and Y retinal ganglion cell behavior with a nonlinear push-pull model of spatiotemporal retinal processing. Vis Res 34:1767–1784

    Article  CAS  PubMed  Google Scholar 

  • Gollisch T, Meister M (2008a) Rapid neural coding in the retina with relative spike latencies. Science 319:1108–1111

    Article  CAS  PubMed  Google Scholar 

  • Gollisch T, Meister M (2008b) Modeling convergent ON and OFF pathways in the early visual system. Biol Cybern 99:263–278

    Article  PubMed Central  PubMed  Google Scholar 

  • Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greschner M, Thiel A, Kretzberg J, Ammermüller J (2006) Complex spike-event pattern of transient On-OFF retinal ganglion cells. J Neurophysiol 96:2845–2856

    Article  PubMed  Google Scholar 

  • Gütig R, Gollisch T, Sompolinsky H, Meister M (2013) Computing complex visual features with retinal spike times. PLoS ONE 8(1):e53063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hare WA, Owen WG (1990) Spatial organization of the bipolar cell’s receptive field in the retina of the tiger salamander. J Physiol (Lond) 421:223–245

    Article  CAS  Google Scholar 

  • Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314:80–85

    Article  CAS  PubMed  Google Scholar 

  • Ibbotson M, Krekelberg B (2011) Visual perception and saccadic eye movements. Curr Opin Neurobiol 21(4):553–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikane H, Gangi M, Honda S, Tachibana M (2005a) Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nat Neurosci 8:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Ishikane H, Gangi M, Honda S, Tachibana M (2005b) Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nat Neurosci 8(8):1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AL, Werblin FS (1998) Spatiotemporal patterns at the retinal output. J Neurophysiol 80(1):447–451

    Article  CAS  PubMed  Google Scholar 

  • Johnston J, Lagnado L (2015) General features of the retinal connectome determine the computation of motion anticipation. eLife 4:e06250

    Article  PubMed Central  Google Scholar 

  • Kaneko A (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol (Lond) 207:623–633

    Article  CAS  Google Scholar 

  • Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: a model for the responses of visual neurons. Neuron 30(3):803–817

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Rieke F (2001) Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J Neurosci 21(1):287–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korenberg MJ, Sakai HM, Naka K (1989) Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels. J Neurophysiol 61(6):1110–1120

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Hayashida Y, Ishida AT (2003) Availability of low-threshold Ca2+ current in retinal ganglion cells. J Neurophysiol 90(6):3888–3901

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Masland RH (2006) Populations of wide-field amacrine cells in the mouse retina. J Comp Neurol 499:797–809

    Article  PubMed  Google Scholar 

  • Maguire G, Lukasiewicz P, Werblin F (1989) Amacrine cell interactions underlying the response to change in the tiger salamander retina. J Neurosci 9:726–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B (2009) Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12:1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Ölveczky BP, Baccus SA, Meister M (2003) Segregation of object and background motion in the retina. Nature 423:401–408

    Article  CAS  PubMed  Google Scholar 

  • Pan ZH, Slaughter MM (1991) Control of retinal information coding by GABAB receptors. J Neurosci 11:1810–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panzeri S, Brunel N, Logothetis NK, Kayser C (2010) Sensory neural codes using multiplexed temporal scales. Trends Neurosci 33(3):111–120

    Article  CAS  PubMed  Google Scholar 

  • Paradiso MA, Meshi D, Pisarcik J, Levine S (2012) Eye movements reset visual perception. J Vis 12(13):11

    Article  PubMed Central  PubMed  Google Scholar 

  • Perry VH, Cowey A (1984) Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Rieke F (2001) Temporal contrast adaptation in salamander bipolar cells. J Neurosci 21:9445–9454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roska B, Werblin F (2003) Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat Neurosci 6:600–608

    Article  CAS  PubMed  Google Scholar 

  • Sağlam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cognit Neurodyn 3:25–32

    Article  Google Scholar 

  • Sakai HM, Naka K (1987a) Signal transmission in the catfish retina. IV. Transmission to ganglion cells. J Neurophysiol 58:1307–1328

    Article  CAS  PubMed  Google Scholar 

  • Sakai HM, Naka K (1987b) Signal transmission in the catfish retina. V. Sensitivity and circuit. J Neurophysiol 58:1329–1350

    Article  CAS  PubMed  Google Scholar 

  • Sakai HM, Naka K (1991) The messages in optic nerve fibers and their interpretation. Brain Res Rev 16(2):135–149

    Article  PubMed  Google Scholar 

  • Sakai HM, Naka K (1992) Response dynamics and receptive-field organization of catfish amacrine cells. J Neurophysiol 67:430–442

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246

    Article  CAS  PubMed  Google Scholar 

  • Schwartz G, Berry MJ 2nd (2008) Sophisticated temporal pattern recognition in retinal ganglion cells. J Neurophysiol 99:1787–1798

    Article  PubMed  Google Scholar 

  • Schwartz G, Taylor S, Fisher C, Harris R, Berry MJ (2007) Synchronized firing among retinal ganglion cells signals motion reversal. Neuron 55(6):958–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segev R, Puchalla J, Berry MJ 2nd (2006) Functional organization of ganglion cells in the salamander retina. J Neurophysiol 95:2277–2292

    Article  PubMed  Google Scholar 

  • Strettoi E, Dacheux RF, Raviola E (1990) Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. J Comp Neurol 295:449–466

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Ishida AT (1996) Transient and sustained depolarization of retinal ganglion cells by Ih. J Neurophysiol 75(5):1932–1943

    Article  CAS  PubMed  Google Scholar 

  • Teeters J, Jacobs A, Werblin F (1997) How neural interactions form neural responses in the salamander retina. J Comput Neurosci 4:5–27

    Article  CAS  PubMed  Google Scholar 

  • Thiel A, Greschner M, Ammermüller J (2006) The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. J Comput Neurosci 21:131–151

    Article  PubMed  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  CAS  PubMed  Google Scholar 

  • Usrey WM, Alonso JM, Reid RC (2000) Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J Neurosci 20:5461–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Hateren JH, Ruttiger L, Sun H, Lee BB (2002) Processing of natural temporal stimuli by macaque retinal ganglion cells. J Neurosci 22:9945–9960

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125:187–190

    Article  CAS  PubMed  Google Scholar 

  • Volgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    Article  PubMed  Google Scholar 

  • Werblin FS, Copenhagen DR (1974) Control of retinal sensitivity. 3. Lateral interactions at the inner plexiform layer. J Gen Physiol 63:88–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol 32:339–355

    Article  CAS  PubMed  Google Scholar 

  • Wu SM, Gao F, Maple BR (2000) Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J Neurosci 20:4462–4470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Murat Sağlam or Yuki Hayashida.

Additional information

Communicated by J. Leo van Hemmen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 17179 kb)

Supplementary material 2 (M4 V 2392 kb)

Appendix

Appendix

1.1 Details of the cellular dynamics

1.1.1 Photoreceptors

The input to the retina model was applied at the photoreceptor level. Each photoreceptor on the two-dimensional spatial grid receives an input of light intensity \( l_{{\underline{x} ,0}} \left( t \right) \) that is processed by a cascade of transformations shown in Eq. (2) as explained previously (Thiel et al. 2006). First, \( l_{{\underline{x} ,0}} \left( t \right) \) was smoothened by a low-pass filter with a time constant \( \tau_{\text{P}} \), and the resulting signal \( l_{{\underline{x} ,1}} \left( t \right) \) was then processed by a compressive nonlinearity yielding a signal \( l_{{\underline{x} ,2}} \left( t \right) \) that has a wider dynamic range than \( l_{{\underline{x} ,1}} \left( t \right) \). The \( l_{{\underline{x} ,2}} \left( t \right) \) was further smoothened by a cascade of two low-pass filters with time constants \( \tau_{\text{P}} \) to obtain the preprocessed photoreceptor input \( l_{{\underline{x} ,{\text{P}}}} \left( t \right) \).

$$\begin{aligned}& l_{{\underline{x} ,1}} \left( t \right) = \left( {1 + \tau_{\text{P}} \frac{\text{d}}{{{\text{d}}t}}} \right)l_{{\underline{x} ,0}} \left( t \right), l_{{\underline{x} ,2}} \left( t \right) = R\left( {\frac{{l_{{\underline{x} ,1}} \left( t \right)}}{{l_{{\underline{x} ,1}} \left( t \right) + I_{0} }}} \right)^{r} , \\& l_{{\underline{x} ,{\text{P}}}} \left( t \right) = \left( {1 + \tau_{\text{P}} \frac{\text{d}}{{{\text{d}}t}}} \right)\left( {1 + \tau_{\text{P}} \frac{\text{d}}{{{\text{d}}t}}} \right)l_{{\underline{x} ,2}} \left( t \right)\end{aligned} $$
(2)

Each photoreceptor was modeled as having two parts, and Eq. (1) governed the dynamics of either part. The membrane potential response of the first part was indicated by \( v_{{\underline{x} ,{\text{P}}}} \left( t \right) \) and stimulated by \( l_{{\underline{x} ,{\text{P}}}} \left( t \right) \) with a delay of \( \Delta t_{\text{P}} \), and thus \( e\left( t \right) \), for this first part, was \( l_{{\underline{x} ,{\text{P}}}} \left( {t - \Delta t_{\text{P}} } \right) \). The second part was dedicated to a synaptic complex with the triad synapse composed of the photoreceptor axon terminal and the dendrite tips of horizontal and bipolar cells. In addition, for this part, the input signals \( e\left( t \right) \) and \( i\left( t \right) \) were provided as \( w_{\text{C}}^{\text{P}} v_{{\underline{x} ,{\text{P}}}}^{ + } \left( t \right) \) and \( w_{\text{C}}^{\text{P}} v_{{\underline{x} ,{\text{P}}}}^{ - } \left( t \right) \), respectively, where \( v_{{\underline{x} ,{\text{P}}}}^{ + } \left( t \right) \) and \( v_{{\underline{x} ,{\text{P}}}}^{ - } \left( t \right) \) stand for the membrane potential response of the first part, and the response to these inputs was indicated by \( v_{{\underline{x} ,{\text{C}}}} \left( t \right) \). Since photoreceptors receive delayed inhibitory feedback signals via the triad synapses (Baylor et al. 1971), \( i\left( t \right) \) for the first part of the photoreceptor was provided as \( w_{\text{P}}^{\text{C}} v_{{\underline{x} ,{\text{C}}}}^{ - } \left( {t - \Delta t_{\text{H}} } \right) \).

1.1.2 Horizontal cells

The horizontal cells receive both depolarizing and hyperpolarizing inputs from photoreceptors via the triad synapse. Hence, \( e\left( t \right) \) and \( i\left( t \right) \) of each horizontal cell were provided as \( w_{\text{H}}^{\text{C}} v_{{\underline{x} ,{\text{C}}}}^{ + } \left( t \right) \) and \( w_{\text{H}}^{\text{C}} v_{{\underline{x} ,{\text{C}}}}^{ - } \left( t \right) \), respectively. The gap junctions among the neighboring cells were realized by the term \( \sum\nolimits_{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{j} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x}^{1} }}^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x}^{6} }} {w_{\text{H}}^{\text{H}} } v_{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{j} ,{\text{H}}}} \left( t \right) \) in Eq. (1), where \( w_{\text{H}}^{\text{H}} \) determines the signaling weight (i.e., time constant for charging the membrane through the gap junction conductance) and \( v_{{\underline{j} ,{\text{H}}}} \left( t \right) \) is the membrane potential response of a neighboring cell. Each horizontal cell was adjacent to six other horizontal cells on the hexagonal spatial grid of the model (Fig. 1, distal layer); therefore, \( \underline{j} \) was \( \underline{x}^{1} , \underline{x}^{2} , \ldots \underline{x}^{6} \).

1.1.3 Bipolar cells

The ON- and OFF-types of bipolar cells depolarize or hyperpolarize in response to light increases, respectively. The input to the OFF-bipolar cell via the triad synapse was provided as

$$ v_{{\underline{x} ,{\text{C}}}} \left( t \right) - v_{{\underline{x} ,{\text{H}}}} \left( t \right). $$

The sign-conserving term from the photoreceptor and sign-inversing term from the horizontal cell are essential to realizing the well-known, center-surround antagonistic spatial profile of the bipolar cell receptive field. In addition, each bipolar cell was modeled as having a reciprocal connection with the narrow-field amacrine cell. Thus, for the OFF-bipolar cells, \( e\left( t \right) \) and \( i\left( t \right) \) were provided as

$$ w_{\text{offB}}^{\text{C}} \left( {v_{{\underline{x} ,{\text{C}}}} \left( t \right) - v_{{\underline{x} ,{\text{H}}}} \left( t \right)} \right)^{ + } - w_{\text{offB}}^{\text{offA}} v_{{\underline{x} ,{\text{offA}}}}^{ - } \left( t \right) $$

and \( w_{\text{offB}}^{\text{C}} \left( {v_{{\underline{x} ,{\text{C}}}} \left( t \right) - v_{{\underline{x} ,{\text{H}}}} \left( t \right)} \right)^{ - } - w_{\text{offB}}^{\text{offA}} v_{{\underline{x} ,{\text{offA}}}}^{ + } \left( t \right) \), respectively.

Similarly, for the ON-bipolar cells, \( e\left( t \right) \) and \( i\left( t \right) \) were given as

$$ w_{\text{onB}}^{\text{C}} \left( { - v_{{\underline{x} ,{\text{C}}}} \left( {t - \Delta t_{\text{onB}} } \right) + v_{{\underline{x} ,{\text{H}}}} \left( {t - \Delta t_{\text{onB}} } \right)} \right)^{ + } - w_{\text{onB}}^{\text{onA}} v_{{\underline{x} ,{\text{onA}}}}^{ - } \left( t \right) $$

and \( w_{\text{onB}}^{\text{C}} \left( { - v_{{\underline{x} ,{\text{C}}}} \left( {t - \Delta t_{\text{onB}} } \right) + v_{{\underline{x} ,{\text{H}}}} \left( {t - \Delta t_{\text{onB}} } \right)} \right)^{ - } - w_{\text{onB}}^{\text{onA}} v_{{\underline{x} ,{\text{onA}}}}^{ + } \left( t \right) \), respectively.

Here, the \( \Delta t_{\text{onB}} \) was employed to take into account the signal transmission delay in the ON pathway emerging at the postsynaptic site of ON-bipolar cells (Ashmore and Copenhagen 1980).

1.1.4 Narrow-field amacrine cells

The OFF-type narrow-field amacrine cells were reciprocally connected to the OFF-bipolar cells, thereby enhancing the transient response of the bipolar cells. The inputs from the OFF-bipolar cell to the OFF-type narrow-field amacrine cell, \( e\left( t \right) \) and \( i\left( t \right) \), were provided as \( w_{\text{offA}}^{\text{offB}} v_{{\underline{x} ,{\text{offB}}}}^{ + } \left( t \right) \) and \( w_{\text{offA}}^{\text{offB}} v_{{\underline{x} ,{\text{offB}}}}^{ - } \left( t \right) \), respectively.

Similarly, \( e\left( t \right) \) and \( i\left( t \right) \) for the ON-type narrow-field amacrine cell were provided as \( w_{\text{onA}}^{\text{onB}} v_{{\underline{x} ,{\text{onB}}}}^{ + } \left( t \right) \) and \( w_{\text{onA}}^{\text{onB}} v_{{\underline{x} ,{\text{onB}}}}^{ - } \left( t \right) \), respectively.

1.1.5 Wide-field amacrine cells

Each of the wide-field amacrine cells was assumed to receive a depolarizing input from a pool of seven OFF- and seven ON-bipolar cells. Hence, \( e\left( t \right) \) was provided as

$$ w_{\text{wfA}}^{\text{offB}} \mathop \sum \limits_{{\underline{j} = \underline{x}^{1} }}^{{\underline{x}^{7} }} v_{{\underline{j} ,{\text{offB}}}}^{ + } \left( t \right) + w_{\text{wfA}}^{\text{onB}} \mathop \sum \limits_{{\underline{j} = \underline{x}^{1} }}^{{\underline{x}^{7} }} v_{{\underline{j} ,{\text{onB}}}}^{ + } \left( t \right) . $$

Since, in the present model, there was no hyperpolarizing input, the term \( i\left( t \right) \) was eliminated for the wide-field amacrine cells.

1.1.6 Ganglion cells

Similar to the wide-field amacrine cells, each unit of the ganglion cells was assumed to receive a depolarizing input from a pool of seven OFF- and seven ON-bipolar cells. Hence, \( e\left( t \right) \) was provided as

$$ w_{\text{G}}^{\text{offB}} \mathop \sum \limits_{{\underline{j} = \underline{x}^{1} }}^{{\underline{x}^{7} }} v_{{\underline{j} ,{\text{offB}}}}^{ + } \left( t \right) + w_{\text{G}}^{\text{onB}} \mathop \sum \limits_{{\underline{j} = \underline{x}^{1} }}^{{\underline{x}^{7} }} v_{{\underline{j} ,{\text{onB}}}}^{ + } \left( t \right) . $$

Since, in the present model, the ganglion cell was modeled to not receive inhibitory input from cells in the same column, i(t) was set to zero. The gap junctions within the ganglion cell network were also implemented by the fourth term in Eq. (1) as

$$ \mathop \sum \limits_{{\underline{j} = \underline{x}^{1} }}^{{\underline{x}^{6} }} w_{\text{G}}^{\text{G}} v_{{\underline{j} ,{\text{G}}}} \left( t \right) . $$

Here, \( \underline{j} \) was \( \underline{x}^{1} , \underline{x}^{2} , \ldots , \underline{x}^{6} \) as each ganglion cell was adjacent to six other ganglion cells on the hexagonal grid. Although i(t) was set to zero, the ganglion cells receive inhibitory signals from distant areas via the wide-field amacrine cells, which was governed by the term,

$$ - w_{\text{G}}^{\text{wfA}} \mathop \sum \limits_{{\underline{j} = \underline{x}^{1} }}^{{\underline{x}^{18} }} v_{{\underline{j} ,{\text{wfA}}}} \left( t \right) - w_{\text{G}}^{\text{wfA}} \mathop \sum \limits_{{\underline{j} = \underline{x}^{1} }}^{{\underline{x}^{24} }} v_{{\underline{j} ,{\text{wfA}}}} \left( t \right) . $$

These two terms indicated the inhibitory inputs coming from the 18 amacrine cells located at three units apart and from the 24 cells located four units apart on the hexagonal grid (Fig. 1, wfA axon). This wide-field signaling was also utilized for a mechanism of the contrast gain control (Fig. 1B, box c) as previously suggested (van Hateren et al. 2002; Thiel et al. 2006; Berry et al. 1999). The signal from the wide-field amacrine cell was temporally processed by a low-pass filter with a time constant \( \tau_{c} \) and a constant delay \( \Delta t_{c} \). The processed signal was then fed to a nonlinearity function (Berry et al. 1999; Crevier and Meister 1998),

$$ f\left( v \right) = \frac{1}{{1 + \left( {c_{1} v} \right)^{4} }} $$

and then limited by a simple nonlinearity of

$$ \frac{{c_{2} f\left( v \right)}}{{c_{3} + f\left( v \right)}}, $$

where \( v \) represents the filtered wfA-mediated signal, \( c_{1} \) determines the skewness of the nonlinearity, and \( c_{2} \) and \( c_{3} \) determine a saturation level of the gain control. The generator potential was multiplied by the output of this gain-control cascade (Berry et al. 1999) and a simple thresholding mechanism, which generated a spike once the potential exceeded a certain threshold (\( \theta \)). Note that when the wfA-mediated inhibition and ganglion cell depolarization perfectly match in time, ganglion cell potential is canceled out before it is multiplied by the gain control; therefore, no spike output is produced.

1.2 Model parameter values

See Table 1.

Table 1 Parameter values used in simulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sağlam, M., Hayashida, Y. A single retinal circuit model for multiple computations. Biol Cybern 112, 427–444 (2018). https://doi.org/10.1007/s00422-018-0767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-018-0767-9

Keywords

Navigation