Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Advances in Imaging and Automated Quantification of Pulmonary Diseases in Non-neoplastic Diseases

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Histological examination has always been the gold standard for the detection and quantification of lung remodeling. However, this method has some limitations regarding the invasiveness of tissue acquisition. Quantitative imaging methods enable the acquisition of valuable information on lung structure and function without the removal of tissue from the body; thus, they are useful for disease identification and follow-up. This article reviews the various quantitative imaging modalities used currently for the non-invasive study of chronic obstructive pulmonary disease, asthma, and interstitial lung diseases. Some promising computer-aided diagnosis methods are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Washko GR, Parraga G, Coxson HO (2012) Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging. Respirology 17:432–444

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee YK, Oh YM, Lee JH et al (2008) Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157–165

    Article  PubMed  Google Scholar 

  3. Henzler T, Schmid-Bindert G, Schoenberg SO et al (2010) Diffusion and perfusion MRI of the lung and mediastinum. Eur J Radiol 76:329–336

    Article  PubMed  Google Scholar 

  4. Pauwels RA, Buist AS, Calverley PM et al (2001) Global Strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO global initiative for chronic obstructive lung disease (GOLD) workshop summary. Am J Respir Crit Care Med 163:1256–1276

    Article  CAS  PubMed  Google Scholar 

  5. McDonough JE, Yuan R, Suzuki M et al (2011) Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 365:1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tho NV, Ryujin Y, Ogawa E et al (2015) Relative contributions of emphysema and airway remodelling to airflow limitation in COPD: consistent results from two cohorts. Respirology 20:594–601

    Article  PubMed  Google Scholar 

  7. Hoffman EA, Reinhardt JM, Sonka M et al (2003) Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function. Acad Radiol 10:1104–1118

    Article  PubMed  Google Scholar 

  8. Ginsburg SB, Lynch DA, Bowler RP et al (2012) Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images. Acad Radiol 19:1241–1251

    Article  PubMed  PubMed Central  Google Scholar 

  9. Milne S, King GG (2014) Advanced imaging in COPD: insights into pulmonary pathophysiology. J Thorac Dis 6:1570–1585

    PubMed  PubMed Central  Google Scholar 

  10. Madani A, Zanen J, de Maertelaer V et al (2006) Pulmonary emphysema: objective quantification at multi-detector row CT—comparison with macroscopic and microscopic morphometry. Radiology 238:1036–1043

    Article  PubMed  Google Scholar 

  11. Gelb AF, Schein M, Kuei J et al (1993) Limited contribution of emphysema in advanced chronic obstructive pulmonary disease. Am Rev Respir Dis 147:1157–1161

    Article  CAS  PubMed  Google Scholar 

  12. Hogg JC, Wright JL, Wiggs BR et al (1994) Lung structure and function in cigarette smokers. Thorax 49:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez CH, Chen YH, Westgate PM et al (2012) Relationship between quantitative CT metrics and health status and BODE in chronic obstructive pulmonary disease. Thorax 67:399–406

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coxson HO, Dirksen A, Edwards LD et al (2013) The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir Med 1:129–136

    Article  PubMed  Google Scholar 

  15. Boedeker KL, McNitt-Gray MF, Rogers SR et al (2004) Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology 232:295–301

    Article  PubMed  Google Scholar 

  16. Stoel BC, Bakker ME, Stolk J et al (2004) Comparison of the sensitivities of 5 different computed tomography scanners for the assessment of the progression of pulmonary emphysema: a phantom study. Invest Radiol 39:1–7

    Article  PubMed  Google Scholar 

  17. Sieren JP, Newell JD, Judy PF et al (2012) Reference standard and statistical model for intersite and temporal comparisons of CT attenuation in a multicenter quantitative lung study. Med Phys 39:5757–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bakker ME, Stolk J, Putter H, Shaker SB et al (2005) Variability in densitometric assessment of pulmonary emphysema with computed tomography. Invest Radiol 40:777–783

    Article  PubMed  Google Scholar 

  19. Fishman A, Martinez F, Naunheim K et al (2003) National Emphysema Treatment Trial Research Group. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 348:2059–2073

    Article  PubMed  Google Scholar 

  20. Mishima M, Hirai T, Itoh H et al (1999) Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 96:8829–8834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uppaluri R, Mitsa T, Sonka M et al (1997) Quantification of pulmonary emphysema from lung computed tomography images. Am J Respir Crit Care Med 156:248–254

    Article  CAS  PubMed  Google Scholar 

  22. Coxson HO, Lam S (2009) Quantitative assessment of the airway wall using computed tomography and optical coherence tomography. Proc Am Thorac Soc 6:439–443

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246:697–722

    Article  PubMed  Google Scholar 

  24. Matsuoka S, Kurihara Y, Yagihashi K et al (2008) Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol 190:762–769

    Article  PubMed  Google Scholar 

  25. Akira M, Toyokawa K, Inoue Y et al (2009) Quantitative CT in chronic obstructive pulmonary disease: inspiratory and expiratory assessment. AJR Am J Roentgenol 192:267–272

    Article  PubMed  Google Scholar 

  26. Madani A, De Maertelaer V, Zanen J et al (2007) Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification—comparison with macroscopic and microscopic morphometry. Radiology 243:250–257

    Article  PubMed  Google Scholar 

  27. Hackx M, Bankier AA, Gevenois PA (2012) Chronic obstructive pulmonary disease: CT quantification of airways disease. Radiology 265:34–48

    Article  PubMed  Google Scholar 

  28. Fain S, Schiebler ML, McCormack DG et al (2010) Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J Magn Reson Imaging 32:1398–1408

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Beek EJR, Hoffman EA (2008) Functional imaging: CT and MRI. Clin Chest Med 29:195–216

    Article  PubMed  PubMed Central  Google Scholar 

  30. de Lange EE, Mugler JP, Brookeman JR et al (1999) Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology 210:851–857

    Article  PubMed  Google Scholar 

  31. Kauczor HU, Ebert M, Kreitner KF et al (1997) Imaging of the lungs using 3He MRI: preliminary clinical experience in 18 patients with and without lung disease. J Magn Reson Imaging 7:538–543

    Article  CAS  PubMed  Google Scholar 

  32. Woods JC, Choong CK, Yablonskiy DA et al (2006) Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med 56:1293–1300

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kirby M, Owrangi A, Svenningsen S et al (2013) On the role of abnormal DL(CO) in ex-smokers without airflow limitation: symptoms, exercise capacity and hyperpolarised helium-3 MRI. Thorax 68:752–759

    Article  PubMed  Google Scholar 

  34. Fain SB, Altes TA, Panth SR et al (2005) Detection of age-dependent changes in healthy adult lungs with diffusion-weighted 3He MRI. Acad Radiol 12:1385–1393

    Article  PubMed  Google Scholar 

  35. Altes TA, Mata J, de Lange EE et al (2006) Assessment of lung development using hyperpolarized helium-3 diffusion MR imaging. J Magn Reson Imaging 24:1277–1283

    Article  PubMed  Google Scholar 

  36. Parraga G, Mathew L, Etemad-Rezai R et al (2008) Hyperpolarized 3He magnetic resonance imaging of ventilation defects in healthy elderly volunteers: initial findings at 3.0. Tesla Acad Radiol 15:776–785

    Article  PubMed  Google Scholar 

  37. Salerno M, de Lange EE, Altes TA et al (2002) Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology 222:252–260

    Article  PubMed  Google Scholar 

  38. Swift AJ, Wild JM, Fichele S et al (2005) Emphysematous changes and normal variation in smokers and COPD patients using diffusion 3He MRI. Eur J Radiol 54:352–358

    Article  PubMed  Google Scholar 

  39. van Beek EJ, Dahmen AM, Stavngaard T et al (2009) Hyperpolarised 3-He MRI vs HRCT in COPD and normal volunteers—PHIL trial. Eur Respir J 34:1311–1321

    Article  PubMed  Google Scholar 

  40. Fichele S, Woodhouse N, Said Z et al (2004) MRI of Helium-3 Gas in healthy lungs: posture related variations of alveolar size. J Magn Reson Imaging 20:331–335

    Article  PubMed  Google Scholar 

  41. Patz S, Muradyan I, Hrovat MI et al (2011) Diffusion of hyperpolarized 129Xe in the lung: simplified model of 129Xe septal uptake and experimental results. New J Phys 13:015009

    Article  Google Scholar 

  42. Patz S, Muradian I, Hrovat MI et al (2008) Human pulmonary imaging and spectroscopy with hyperpolarized 129-Xe at 0.2T. Radiology 15:713–727

    Google Scholar 

  43. Niimi A, Matsumoto H, Takemura M et al (2004) Clinical assessment of airway remodeling in asthma: utility of computed tomography. Clin Rev Allergy Immunol 27:45–58

    Article  PubMed  Google Scholar 

  44. Bousquet J, Chanez P, Lacoste JY et al (1992) Asthma: a disease remodeling the airways. Allergy 47:3–11

    Article  CAS  PubMed  Google Scholar 

  45. Aysola RS, Hoffman EA, Gierada D et al (2008) Airway remodeling measured by multidetector CT is increased in severe asthma and correlates with pathology. Chest 134:1183–1191

    Article  PubMed  PubMed Central  Google Scholar 

  46. Niimi A, Matsumoto H, Amitani R et al (2004) Effect of short-term treatment with inhaled corticosteroid on airway wall thickening in asthma. Am J Med 116:725–731

    Article  CAS  PubMed  Google Scholar 

  47. Kasahara K, Shiba K, Ozawa T et al (2002) Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma. Thorax 57:242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gono H, Fujimoto K, Kawakami S et al (2003) Evaluation of airway wall thickness and air trapping by HRCT in asymptomatic asthma. Eur Respir J 22:965–971

    Article  CAS  PubMed  Google Scholar 

  49. Busacker A, Newell JD Jr, Keefe T et al (2009) A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. Chest 135:48–56

    Article  PubMed  Google Scholar 

  50. Zeidler MR, Kleerup EC, Goldin JG et al (2006) Montelukast improves regional air-trapping due to small airways obstruction in asthma. Eur Respir J 27:307–315

    Article  CAS  PubMed  Google Scholar 

  51. Lee E, Seo JB, Lee HJ et al (2015) Quantitative assessment of global and regional air trappings using non-rigid registration and regional specific volume change of inspiratory/expiratory CT scans: studies on healthy volunteers and asthmatics. Korean J Radiol 16:632–640

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ohno Y, Nishio M, Koyama H et al (2014) Asthma: comparison of dynamic oxygen-enhanced MR imaging and quantitative thin-section CT for evaluation of clinical treatment. Radiology 273:907–916

    Article  PubMed  Google Scholar 

  53. Ryu JH, Colby TV, Hartman TE et al (2001) Smoking-related interstitial lung diseases: a concise review. Eur Resp J 17:122–132

    Article  CAS  Google Scholar 

  54. Yoon RG, Seo JB, Kim N et al (2013) Quantitative assessment of change in regional disease patterns on serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system. Eur Radiol 23:692–701

    PubMed  Google Scholar 

  55. Korfiatis PD, Karahaliou AN, Kazantzi AD et al (2010) Texture-based identification and characterization of interstitial pneumonia patterns in lung multidetector CT. IEEE Trans Inf Technol Biomed 14:675–680

    Article  PubMed  Google Scholar 

  56. Hartley PG, Galvin JR, Hunninghake GW et al (1994) High-resolution CT-derived measures of lung density are valid indexes of interstitial lung disease. J Appl Physiol 76:271–277

    CAS  PubMed  Google Scholar 

  57. Colombi D, Dinkel J, Weinheimer O et al (2015) Visual vs fully automatic histogram-based assessment of idiopathic pulmonary fibrosis (IPF) progression using sequential multidetector computed tomography (MDCT). PLoS One 10:e0130653

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shyu CR, Brodley CE, Kak AC et al (1999) Assert: a physician-in-the-loop content-based retrieval system for HRCT image databases. Comput Vis Image Underst 75:111–132

    Article  Google Scholar 

  59. Zavaletta VA, Bartholmai BJ, Robb RA (2007) High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis. Acad Radiol 14:772–787

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu Y, van Beek EJ, Hwanjo Y et al (2006) Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol 13:969–978

    Article  PubMed  Google Scholar 

  61. Ohkubo H, Kanemitsu Y, Uemura T et al (2016) Normal lung quantification in usual interstitial pneumonia pattern: the impact of threshold-based volumetric ct analysis for the staging of idiopathic pulmonary fibrosis. PLoS One. doi:10.1371/journal.pone.0152505

    Google Scholar 

  62. Gruden JF, Panse PM, Leslie KO et al (2013) UIP diagnosed at surgical lung biopsy, 2000–2009: HRCT patterns and proposed classification system. AJR Am J Roentgenol 200:W458–W467

    Article  PubMed  Google Scholar 

  63. Maldonado F, Moua T, Rajagopalan S et al (2014) Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 43:204–212

    Article  PubMed  Google Scholar 

  64. Uchiyama Y, Katsuragawa S, Abe H et al (2003) Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys 30:2440–2454

    Article  PubMed  Google Scholar 

  65. Buzan MTA, Eichinger M, Kreuter M et al (2015) T2 mapping of CT remodelling patterns in interstitial lung disease. Eur Radiol 25:3167–3174

    Article  PubMed  Google Scholar 

  66. Eibel R, Herzog P, Dietrich O et al (2006) Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 241:880–891

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Balbinot.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbinot, F., da Costa Batista Guedes, Á., Nascimento, D.Z. et al. Advances in Imaging and Automated Quantification of Pulmonary Diseases in Non-neoplastic Diseases. Lung 194, 871–879 (2016). https://doi.org/10.1007/s00408-016-9940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9940-x

Keywords

Navigation