Abstract
In this paper, three deposition techniques are combined to create a window material with high average transmission at oblique angles of incidence. Spectrophotometry and ellipsometry measurements, respectively, yield the optical constants n and k. In contrast with other analyses on the subject, a high average transmission, higher than 91% in the 450–900 nm spectral range, is obtained at incident angles of 20–25°. The refractive index and extinction coefficient are determined by the Swanepoel method. The iterative optimization performed using the OpenFilters software leads to an antireflection (AR) multilayer with low reflection and high transmission. The surface quality of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which revealed compact, continuous, and smooth films.
Similar content being viewed by others
References
Y. Sung, R.E. Malay, X. Wen, C.N. Bezama, V.V. Soman, M.H. Huang, S.M. Garner, D.M. Poliks, D. Klotzkin, Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates. Appl. Opt. 57(9), 2202–2207 (2018)
I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 (1986)
N. Karim, M. Zhang, S. Afroj, V. Koncherry, P. Potluri, K.S. Novoselov, Graphene-based surface heater for de-icing applications. RSC Adv. 8(30), 16815 (2018)
H. Pluk, D.J. Stokes, B. Lich, B. Wieringa, J. Fransen, Advantages of indium–tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells. J. Microsc. 233(3), 353–363 (2009)
G. Walker, A Review of technologies for sensing contact location on the surface of a display. J. Soc. Inf. Disp. 20(8), 413–440 (2012)
C. Guillén, J. Herrero, Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen. J. Appl. Phys. 101, 073514 (2007)
J.-K. Kim, J.-M. Lee, Electrical and optical properties of near UV transparent conductive ITO/Ga2O3 multilayer films deposited by RF magnetron sputtering. Appl. Phys. Lett. 109, 172107 (2016)
M.J. Alam, D.C. Cameron, Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process. Thin Solid Films 377, 455–459 (2000)
F. Kurdesau, G. Khripunov, A.F. da Cunha, M. Kaelin, A.N. Tiwari, Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. J. Non-Cryst. Solids 352(9–20), 1466–1470 (2006)
D. Zhang, I.A. Digdaya, R. Santbergen, R.A.C.M.M. van Swaaij, P. Bronsveld, M. Zeman, J.A.M. van Roosmalen, A.W. Weeber, Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Solar Energy Mater. Solar Cells 117, 132–138 (2013)
Y. Zhong, Y.C. Shin, C.M. Kim, B.G. Lee, E.H. Kim, Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Y.P. Lee, T.G. Kim, Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition. J. Mater. Res. 23, 2500–2505 (2008)
X. Yan, F.W. Mont, D.J. Poxson, M.F. Schubert, J.K. Kim, J. Cho, E.F. Schubert, Refractive-Index-Matched Indium–Tin-Oxide Electrodes for Liquid Crystal Display. J. Appl. Phys. 48, 120203 (2009)
J.K. Kim, T. Gessmann, E.F. Schubert, J.Q. Xi, H. Luo, J. Cho, C. Sone, Y. Park, GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer. Appl. Phys. Lett. 88, 013501 (2006)
K. Bautista, Four point operation, thin film deposition, (2004)
R.J. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1980)
N. Nedelcu, V. Chiroiu, C. Rugină, L. Munteanu, R. Ioan, I. Girip, C. Dragne, Dielectric properties of GeSbSe glasses prepared by the conventional melt-quenching method. Results Phys. 16, 12856 (2020)
N. Nedelcu, V. Chiroiu, L. Munteanu, I. Girip, Characterization of GeSbSe thin films synthesized by the conventional melt-quenching method. Spectrosc. IR Spectrosc. Today’s Spectrosc. 35, 22–33 (2020)
M. Gholami, A. Nazari, K. Azarin, S. Yazdanimeher, B. Sadeghniya, Determination of the thickness and optical constants of metal oxide thin films by different methods. J. Basic. Appl. Sci. Res. 3(5), 597–600 (2013)
J. Sanchez-Gonzalez, A. Diaz-Parralejo, A.L. Ortiz, F. Guiberteau, Determination of optical properties in nanostructured thin films using the Swanepoel method. Appl. Surf. Sci. 252, 6013–6017 (2006)
K. Salwan, I. Ali-Ani, Methods of determining the refractive index of thin solid films. J. Appl. Phys. 4(1), 17–23 (2008)
D. Poitras, S. Larouche, L. Martinu, Design and plasma deposition of dispersion-corrected multiband rugate filters. Appl. Opt. 41, 5249–5255 (2002)
Y. Wen, P. He, Y. Yao, Y. Zhang, R. Cheng, L. Yin, N. Li, J. Li, J. Wang, Z. Wang, Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater. 32(7), 1906874 (2019)
W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber, G. Loke, W. Xu, C. Hou, S. Zhou, M. Chen et al., Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020)
Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, Q. Bao, Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Mater. Sci. 1, 268–287 (2019)
S. Larouche, L. Martinu, Open-source software for the design, optimization, and synthesis of optical filters. Appl. Opt. 47(13), C219–C230 (2008)
Coating, single or multilayer, interference: durability requirements specification – (1980) - MIL-C-48497 Revision A
N. Nedelcu, V. Chiroiu, L. Munteanu, C. Rugina, Uncertainties of transmittance and absorbance measurements of the chalcogenide thin films. Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04297-z
Acknowledgements
This work was supported by a grant from the Romanian Ministry of Education and Research, Project PN-IIIP2-2.1-PED-2019-0085 CONTRACT 447PED/2020 for Institute of Solid Mechanics, Romanian, and through the Core Program 21N/2019 for National Institute of Materials Physics. The authors thank Dr. Constantin Logofătu and Dr. Cătălin Negrilă from NIMP for the XPS measurements and also Dr.Lucian Trupină for AFM measurements.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nedelcu, N., Chiroiu, V., Munteanu, L. et al. Design of highly transparent conductive optical coatings optimized for oblique angle light incidence. Appl. Phys. A 127, 575 (2021). https://doi.org/10.1007/s00339-021-04726-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-021-04726-z