Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Star-Critical Gallai–Ramsey Numbers of Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The Gallai–Ramsey number \(gr_{k}(K_{3}: H_{1}, H_{2}, \cdots , H_{k})\) is the smallest integer n such that every k-edge-colored \(K_{n}\) contains either a rainbow \(K_3\) or a monochromatic \(H_{i}\) in color i for some \(i\in [k]\). We define the star-critical Gallai–Ramsey number \(gr_{k}^{*}(K_3: H_{1}, H_{2}, \cdots , H_{k})\) as the smallest integer s such that every k-edge-colored \(K_{n}-K_{1, n-1-s}\) contains either a rainbow \(K_3\) or a monochromatic \(H_{i}\) in color i for some \(i\in [k]\). When \(H=H_{1}=\cdots =H_{k}\), we simply denote \(gr_{k}^{*}(K_{3}: H_{1}, H_{2}, \cdots , H_{k})\) by \(gr_{k}^{*}(K_{3}: H)\). We determine the star-critical Gallai–Ramsey numbers for complete graphs and some small graphs. Furthermore, we show that \(gr_{k}^{*}(K_3: H)\) is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star and constant (not depending on k) if H is a star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cameron, K., Edmonds, J.: Lambda composition. J. Graph Theory 26(1), 9–16 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Faudree, R.J., Gould, R.J., Jacobson, M.S., Magnant, C.: Ramsey numbers in rainbow triangle free colorings. Australas. J. Combin. 46, 269–284 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory—a dynamic survey. Theor. Appl. Graphs (2014). https://doi.org/10.20429/tag.2014.000101

    Article  MATH  Google Scholar 

  4. Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gyárfás, A., Simonyi, G.: Edge colorings of complete graphs without tricolored triangles. J. Graph Theory 46(3), 211–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gyárfás, A., Sárközy, G., Sebő, A., Selkow, S.: Ramsey-type results for Gallai-colorings. J. Graph Theory 64, 233–243 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Hook, J.: The classification of critical graphs and star-critical Ramsey numbers. Lehigh University, Ph.D. thesis (2010)

  8. Hook, J., Isaak, G.: Star-critical Ramsey numbers. Discrete Appl. Math. 159, 328–334 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Magnant, C.: A general lower bound on Gallai-Ramsey numbers for non-bipartite graphs. Theor. Appl. Graphs 5(1), 4 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Magnant, C., Nowbandegani, P.S.: Topics in Gallai-Ramsey theory, Springer Briefs in Mathematics. Springer, Switzerland (2020)

    Book  MATH  Google Scholar 

  11. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Combin. (1994)

  12. Wu, H., Magnant, C., Salehi Nowbandegani, P., Xia, S.: All partitions have small parts-Gallai-Ramsey numbers of bipartite graphs. Discrete Appl. Math. 254, 196–203 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Y., Broersma, H., Chen, Y.: On star-critical and upper size Ramsey numbers. Discrete Appl. Math. 202, 174–180 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Guangdong (No. 2021A1515012045) and by the Science and Technology Program of Guangzhou (No. 202002030183) and by the National Natural Science Foundation of China (No. 1216073) and by the Natural Science Foundation of Qinghai (No. 2020-ZJ-924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Liu, Y. Star-Critical Gallai–Ramsey Numbers of Graphs. Graphs and Combinatorics 38, 158 (2022). https://doi.org/10.1007/s00373-022-02561-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02561-4

Keywords

Mathematics Subject Classification

Navigation