Abstract
The avoidability, or unavoidability of patterns in words over finite alphabets has been studied extensively. The word α over a finite set A is said to be unavoidable for an infinite set B+ of nonempty words over a finite set B if, for all but finitely many elements w of B+, there exists a semigroup morphism \(\phi :A^{+}\rightarrow B^{+}\) such that ϕ(α) is a factor of w. We discuss unavoidability in the milieu of various types of complexity. For words that are unavoidable, we provide a constructive upper bound to the lengths of words that can avoid them. We then discuss the relative density of unavoidable words. Subsequently, we investigate computational aspects of unavoidable words, focusing on the computational complexity of determining whether a word is unavoidable. This culminates in a proof that this problem is NP-complete.
Similar content being viewed by others
References
Adian, S.I., Adjan, S.I, Lennox, J., Wiegold, J.: The Burnside Problem and Identities in Groups. Results in Mathematics and Related Areas, Springer (1979)
Alon, N., Grytczuk, J., Hałuszczak, M., Riordan, O.: Nonrepetitive colorings of graphs. Random Structures & Algorithms 21(3-4), 336–346 (2002)
Arshon, S.: Démonstration de l’existence des suites asymétriques infinies. Rec. Math. [Mat. Sbornik] N.S. 44(4), 769–779 (June 1937)
Bean, D.R., Ehrenfeucht, A., McNulty, G.F.: Avoidable patterns in strings of symbols. Pac. J. Math. 85(2), 261–294 (1979)
Blakeley, B., Blanchet-Sadri, F., Gunter, J., Rampersad, N.: On the complexity of deciding avoidability of sets of partial words. In: Diekert, V, Nowotka, D (eds.) Developments in Language Theory, pp. 113–124, Berlin, Heidelberg. Springer Berlin Heidelberg (2009)
Burris, S., Nelson, E.: Embedding the dual of πm in the lattice of equational classes of commutative semigroups. Proc. Am. Math. Soc 30(1), 37–39 (1971)
Conlon, D., Fox, J., Sudakov, B.: Tower-type bounds for unavoidable patterns in words Transactions of the American Mathematical Society (2019)
Cooper, J., Rorabaugh, D.: Bounds on Zimin word avoidance. Congressus Numerantium 09, 87–95 (2014)
Currie, J: Open problems in pattern avoidance. Am. Math. Mon. 100(8), 790–793 (1993)
Dekking, M.: On repetitions of blocks in binary sequences. J. Comb. Theory 20, 292–299 (1976)
Erdős, P.: Some unsolved problems. Michigan Math. J. 4(3), 291–300 (1957)
Evdokimov, A.A.: Strongly asymmetric sequences generated by a finite number of symbols. Dokl. Akad. Nauk SSSR 179, 1268–1271 (1968). (also Soviet Math. Dokl. 9 (1968),536-539)
Fouché, W.L.: Unavoidable regularities and factor permutations of words. In: Proc. Royal Society Edinburgh, vol. 125A, pp. 519–524. Cambridge University Press (1995)
Graham, R.L., Rothschild, B.L.: Ramsey Theory, 2nd. Wiley, New York (1990)
Grytczuk, J.: Pattern avoiding colorings of euclidean spaces. Ars Comb. 64, 109–07 (2002)
Hawkins, D., Mientka, W.: On sequences which contain no repetition. Math. Student 24, 185–187 (1956)
Hedlund, G.: Remarks on the work of Axel Thue on sequences. Nordisk. Mat. Tidskr. 15, 147–150 (1967)
Heitsch, C.E.: Computational Complexity of Generalized Pattern Matching. PhD thesis, University of California, Berkeley. AAI3001868 (2000)
Heitsch, C.E.: Generalized pattern matching and the complexity of unavoidability testing. In: Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching, CPM ’01, pp. 219–230, London, UK, UK, Springer-Verlag (2001)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Massachusetts (1979)
Ježek, J: Intervals in the lattice of varieties. Algebra Universalis 6(1), 147–158 (Dec 1976)
Justin, J.: Propriétés combinatoires de certains semigroupes. CRAS 269, 1113–1115 (1969)
Keranen, V.: Abelian squares are avoidable on 4 letters. Lect. Notes Comput. Sci 623(07), 41–52 (1992)
Larson, J.A., Laver, R., Mcnulty, G.: Square-free and cube-free colorings of the ordinals. Pacific J Math 89, 07 (1980)
Leech, J.: A problem on strings of beads. Math. Gaz. 41, 277–278 (1957)
Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2002)
Morse, M.: A solution of the problem of finding an infinite play in chess. Bull. Amer. Math. Soc. 44, 632 (1938)
Morse, M, Hedlund, G.A.: Unending chess, symbolic dynamics and a problem in semigroups. Duke Math. J. 11(1), 1–7 (1944). 03
Murskii, V.L.: Examples of varieties of semigroups. Mathematical notes of the Academy of Sciences of the USSR 3(6), 423–427 (Jun 1968)
Novikov, P.S., Adjan, S.I.: Infinite periodic groups. iii. Mathematics of the USSR-Izvestiya 2(3), 665 (1968)
Pleasants, P.A.: Non-repetitive sequences. Mat. Proc. Camb. Phil. Soc. 68, 267–274 (1970)
Prouhet, M.E.: Mémoire sur quelques relations entre les puissances des nombres. C. R. Acad. Sci. Paris 33(A), 03 (1851)
Entringer, D., Jackson R., Schatz, J.: On nonrepetitive sequences. J. Combinatorial Theory 16, 159–164 (1974)
Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc s2–30(1), 264–286 (1930). 01
Rytter, W, Shur, A.M.: Searching for Zimin patterns. Theor. Comput. Sci. 571, 50–57 (2015)
Sapir, M.V.: Problems of Burnside type and the finite basis property in varieties of semi- groups. Izv. Akad. Nauk. SSSR. Ser. Mat. 51, 319–340 (1987)
Sapir, M.V., Guba, V.S., Volkov, M.V: Combinatorial Algebra: Syntax and Semantics. Springer Monographs in Mathematics. Springer International Publishing (2016)
Tarski, A: The concept of truth in formalized languages. In: Logic, Semantics, Metamathematics, pp. 152–278. Oxford University Press, Oxford. 1936/1956. Translation, by Joseph H. Woodger, tarski36 (1933)
Thue, A.: Über unendliche Zeichenreihen. Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse (1906)
Zimin, A.I.: Blocking sets of terms. Math. USSR-Sb. 47(2), 353 (1984)
Acknowledgements
My deepest thanks go to Willem Fouché, Petrus Potgieter, Pascal Vanier, Arno Pauly, Holger Spakowski, Niko Sauer, Narad Rampersad and James Currie. Without their generous patience, deep insight, diligence and kindness, this paper would not have been possible. Many thanks also to the wonderful anonymous editors and reviewers of TOCS. This paper has been written in partial fulfillment of the requirements for the degree Doctor of Philosophy in Operations Research at the University of South Africa.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sauer, P. The Complexity of Unavoidable Word Patterns. Theory Comput Syst 66, 802–820 (2022). https://doi.org/10.1007/s00224-022-10090-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-022-10090-z