Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Navigating the Complex Landscape of Shock Filter Cahn–Hilliard Equation: From Regularized to Entropy Solutions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Image inpainting involves filling in damaged or missing regions of an image by utilizing information from the surrounding areas. In this paper, we investigate a fully nonlinear partial differential equation inspired by the modified Cahn–Hilliard equation. Instead of using standard potentials that depend solely on pixel intensities, we consider morphological image enhancement filters that are based on a variant of the shock filter:

$$\begin{aligned} \partial _t u&= \Delta \left( -\nu \arctan (\Delta u)|\nabla u| - \mu \Delta u \right) + \lambda (u_0 - u). \end{aligned}$$

This is referred to as the Shock Filter Cahn–Hilliard Equation. The equation is nonlinear with respect to the highest-order derivative, which poses significant mathematical challenges. To address these, we make use of a specific approximation argument, establishing the existence of a family of approximate solutions through the Leray–Schauder fixed point theorem and the Aubin–Lions lemma. In the limit, we obtain a solution strategy wherein we can prove the existence and uniqueness of solutions. Proving the latter involves the Kruzhkov entropy type-admissibility conditions. Additionally, we use a numerical method based on the convexity splitting idea to approximate solutions of the nonlinear partial differential equation and achieve fast inpainting results. To demonstrate the effectiveness of our approach, we apply our method to standard binary images and compare it with variations of the Cahn–Hilliard equation commonly used in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Backofen, R., Wise, S.M., Salvalaglio, M., Voigt, A.: Convexity splitting in a phase field model for surface diffusion. Int. J. Num. Anal. Model. 16, 192–209, 2020

    MathSciNet  Google Scholar 

  2. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.: Image inpainting. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 2000

  3. Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier-Stokes, fluid dynamics, and image and video inpainting, Computer Vision and Pattern Recognition, 2001. CVPR 2001. In: Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE, 2001

  4. Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans Image Process 16, 285–291, 2006

    Article  ADS  MathSciNet  Google Scholar 

  5. Bertozzi, A., Esedoglu, S., Gillette, A.: Analysis of a two-scale Cahn-Hilliard model for binary image inpainting. Multiscale Model. Simul. 6, 913–936, 2007

    Article  MathSciNet  Google Scholar 

  6. Bertozzi, A., Schönlieb, C.B.: Unconditionally stable schemes for higher order inpainting Comm. Math. Sci. 9, 413–457, 2011

    MathSciNet  Google Scholar 

  7. Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161, 223–342, 2005

    Article  MathSciNet  Google Scholar 

  8. Blowey, J.F., Elliot, C.M.: The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part 1: mathematical analysis. Eur. J. Appl. Math. 2, 233–280, 1991

    Article  Google Scholar 

  9. Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn-Hilliard inpainting. SIAM J. Imaging Sci. 7, 67–97, 2014

    Article  MathSciNet  Google Scholar 

  10. Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci. 8, 2352–2382, 2015

    Article  MathSciNet  Google Scholar 

  11. Brkić, A.L., Mitrovic, D., Novak, A.: On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation. J. Adv. Res. 25, 67–76, 2020

    Article  Google Scholar 

  12. Brkić, A.L., Novak, A.: A nonlocal image inpainting problem using the linear Allen-Cahn equation. In: Conference on Non-integer Order Calculus and Its Applications. Springer, 2018

  13. Brown, R., Shen, Z.W.: The initial-Dirichlet problem for a fourth order parabolic equation in Lipschitz cylinders. Indiana Univ. Math. J. 39, 1313–1353, 1990

    Article  MathSciNet  Google Scholar 

  14. Buades, A., Bartomeu, C., Jean-Michel, M.: Neighborhood filters and PDE’s. Numerische Mathematik 105, 1–34, 2006

    Article  MathSciNet  Google Scholar 

  15. Burger, M., He, L., Schönlieb, C.-B.: Cahn-Hilliard inpainting and a generalization for grayvalue images. SIAM J. Imaging Sci. 2, 1129–1167, 2009

    Article  MathSciNet  Google Scholar 

  16. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267, 1958

    Article  ADS  Google Scholar 

  17. Calder, J., Mansouri, A., Yezzi, A.: Image sharpening via Sobolev gradient flows. SIAM J. Imaging Sci. 3, 981–1014, 2010

    Article  MathSciNet  Google Scholar 

  18. Carrillo, J.A., Kalliadasis, S., Liang, F., Perez, S.P.: Enhancement of damagedimage prediction through Cahn-Hilliard image inpainting. R. Soc. Open Sci. 8, 201294, 2021

    Article  ADS  Google Scholar 

  19. Cates, M.E., Tjhung, E.: Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions. J. Fluid Mech. 836, P1, 2018

    Article  ADS  MathSciNet  Google Scholar 

  20. Chan, T.F., Shen, J., Zhou, H.-M.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25, 107–125, 2006

    Article  MathSciNet  Google Scholar 

  21. Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227, 6241–6248, 2008

    Article  ADS  MathSciNet  Google Scholar 

  22. Cherfils, L., Fakih, H., Miranville, A.: A Cahn-Hilliard system with a fidelity term for color image inpainting. J. Math. Imag. Vis. 54, 117–131, 2016

    Article  MathSciNet  Google Scholar 

  23. Cherepova, M.F.: Boundary value problem for a higher-order parabolic equation with growing coefficients. Diff. Eq. 44, 527–537, 2008

    Article  Google Scholar 

  24. Cherfils, L., Fakih, H., Miranville, A.: A complex version of the Cahn-Hilliard equation for grayscale image inpainting. Multiscale Model. Simul. 15, 575–605, 2017

    Article  MathSciNet  Google Scholar 

  25. Cherfils, L., Hussein, F., Miranville, A.: On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms. SIAM J. Imaging Sci. 8, 1123–1140, 2015

    Article  MathSciNet  Google Scholar 

  26. Cherfils, L., Hussein, F., Miranville, A.: Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting. Inverse Prob. Imaging 9, 105–125, 2015

    Article  MathSciNet  Google Scholar 

  27. Cherfils, L., Miranville, A., Zelik, S.: The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79, 561–596, 2011

    Article  MathSciNet  Google Scholar 

  28. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. AMS 27, 1–67, 1992

    Article  MathSciNet  Google Scholar 

  29. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numerische Mathematik 63, 39–65, 1992

    Article  MathSciNet  Google Scholar 

  30. Dai, S., Du, Q.: Weak solutions for the Cahn-Hilliard equation with degenerate mobility. Arch. Rational Mech. Anal. 219, 1161–1184, 2016

    Article  ADS  MathSciNet  Google Scholar 

  31. DiPerna, R., Majda, A.: Oscillation and concentration in weak solutions in the incompressible fluid equations. Comm. Math. Phys. 108, 667–689, 1987

    Article  ADS  MathSciNet  Google Scholar 

  32. Escauriaza, L., Montaner, S., Zhang, C.: Analyticity of solutions to parabolic evolutions and applications. SIAM J. Math. Anal. 49, 4064–4092, 2017

    Article  MathSciNet  Google Scholar 

  33. Esedoglu, S., Osher, S.J.: Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Comm. Pure App. Math. 57, 1609–1626, 2004

    Article  MathSciNet  Google Scholar 

  34. Esedoglu, S., Jianhong, S.: Digital inpainting based on the Mumford-Shah-Euler image model. Eur. J. App. Math. 13, 353–370, 2002

    MathSciNet  Google Scholar 

  35. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS Online Proceedings Library (OPL) 529, 1998

  36. Garcke, H., Fong Lam, K., Styles, V.: Cahn-Hilliard inpainting with the double obstacle potential. SIAM J. Imaging Sci. 11, 2064–2089, 2018

    Article  MathSciNet  Google Scholar 

  37. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Image enhancement and denoising by complex diffusion processes. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1020–1036, 2004

    Article  Google Scholar 

  38. Glasner, K., Orizaga, S.: Improving the accuracy of convexity splitting methods for gradient flow equations. J. Comp. Phys. 315, 52–64, 2016

    Article  ADS  MathSciNet  Google Scholar 

  39. Gomez, H., Hughes, T.J.R.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comp. Phys. 230, 5310–5327, 2011

    Article  ADS  MathSciNet  Google Scholar 

  40. Fischer, P., Mergheim, J., Steinmann, P.: On the C1 continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein-Bézier patches. Int. J. Num. Meth. Eng. 82, 1282–1307, 2010

    Article  Google Scholar 

  41. Gilbarg, D., Trudinger, N.: Elliptic partial differential equation of second order. Fundamental Principles of Mathematical Sciences 224. Springer-Verlag, Berlin, 1983

  42. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J. Comp. Phys. 290, 139–156, 2015

    Article  ADS  MathSciNet  Google Scholar 

  43. Kalisch, H., Mitrovic, D.: On existence and admissibility of singular solutions for systems of conservation laws. Int. J. Appl. Comput. Math 8, 175, 2022

    Article  MathSciNet  Google Scholar 

  44. Kruzhkov, S.N.: First order quasilinear equations in several independent variables. Mat. Sb. 81, 1309–1351, 1970

    Google Scholar 

  45. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D Nonlinear Phenom. 179, 211–228, 2003

    Article  ADS  MathSciNet  Google Scholar 

  46. Magaletti, F., Picano, F., Chinappi, M., Marino, L., Casciola, C.M.: The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids. J. Fluid Mech. 714, 95–126, 2013

    Article  ADS  MathSciNet  Google Scholar 

  47. Miranville, A.: The Cahn-Hilliard equation and some of its variants. AIMS Math. 2, 479–544, 2017

    Article  Google Scholar 

  48. Miranville, A.: The Cahn-Hilliard equation: recent advances and applications, Society for Industrial and Applied Mathematics, 2019

  49. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685, 1989

    Article  MathSciNet  Google Scholar 

  50. Novak, A., Reinić, N.: Shock filter as the classifier for image inpainting problem using the Cahn-Hilliard equation. Comp. Math. App. 123, 105–114, 2022

    Article  MathSciNet  Google Scholar 

  51. Novick-Cohen, A.: The Cahn-Hilliard equation. Handbook Differ. Equ. Evol. Equ. 4, 201–228, 2008

    MathSciNet  Google Scholar 

  52. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Num. Anal. 27, 919–940, 1990

    Article  ADS  Google Scholar 

  53. Parisotto, S., Sch\(\ddot{n}\)lieb, C.-B.: MATLAB/Python Codes for the Image Inpainting Problem (3.0.1). Zenodo, 2020

  54. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: App. Math. Sci, Springer, New York, 1983

  55. Pei, S., Yanren, H., Bo, Y.: A linearly second-order energy stable scheme for the phase field crystal model. Appl. Numer. Math. 140, 134–164, 2019

    Article  MathSciNet  Google Scholar 

  56. Puri, S., Bray, A.J., Lebowitz, J.L.: Phase-separation kinetics in a model with order parameter-dependent mobility. Phys. Rev. E 56, 758, 1997

    Article  ADS  Google Scholar 

  57. Ringholm, T., Lazic, J., Schonlieb, C.-B.: Variational image regularization with Euler’s elastica using a discrete gradient scheme. SIAM J. Imaging Sci. 11, 2665–2691, 2018

    Article  MathSciNet  Google Scholar 

  58. Roubícek, T.: Nonlinear Partial Differential Equations with Applications, vol. 153. Springer Science, Cham (2013)

    Google Scholar 

  59. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60, 259–268, 1992

    Article  ADS  MathSciNet  Google Scholar 

  60. Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63, 564–592, 2003

    Article  MathSciNet  Google Scholar 

  61. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62, 1019–1043, 2002

    Article  MathSciNet  Google Scholar 

  62. Shin, J., Lee, H.G.: A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. Appl. Numer. Math. 163, 30–42, 2021

    Article  MathSciNet  Google Scholar 

  63. Shin, J., Geun, H., Lee, J.: Unconditionally stable methods for gradient flow using convex splitting Runge-Kutta scheme. J. Comput. Phys. 347, 367–381, 2017

    Article  ADS  MathSciNet  Google Scholar 

  64. Simi, V.R., Reddy Edla, D., Joseph, J.: An inverse mathematical technique for improving the sharpness of magnetic resonance images. J. Amb. Intell. Human. Comput. 14, 2061–2075, 2023

    Article  Google Scholar 

  65. Tai, X.-C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4, 313–344, 2011

    Article  MathSciNet  Google Scholar 

  66. Thanh, D.N.H., Surya Prasath, V.B., Dvoenko, S.: An adaptive image inpainting method based on Euler’s elastica with adaptive parameters estimation and the discrete gradient method. Signal Process. 178, 107797, 2021

    Article  Google Scholar 

  67. Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10, 1169–1186, 2001

    Article  ADS  Google Scholar 

  68. Vollmayr-Lee, B.P., Rutenberg, A.D.: Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E 68(6), 066703, 2003

    Article  ADS  Google Scholar 

  69. Weickert, J., Coherence-enhancing shock filters. In: Pattern Recognition: 25th DAGM Symposium, Magdeburg, Germany, September 10–12,: Proceedings 25, p. 2003. Springer, Berlin Heidelberg, 2003

  70. Yang, X.: Numerical approximations for the Cahn-Hilliard phase field model of the binary fluid-surfactant system. J. Sci. Comput. 74, 1533–1553, 2018

    Article  MathSciNet  Google Scholar 

  71. Zaks, M.A., Podolny, A., Nepomnyashchy, A.A., Golovin, A.A.: Periodic stationary patterns governed by a convective Cahn-Hilliard equation. SIAM J. App. Math. 66, 700–720, 2005

    Article  MathSciNet  Google Scholar 

  72. Zhu, W., Tai, X.-C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Probl. Imaging 7, 1409–1432, 2013

    Article  MathSciNet  Google Scholar 

  73. Zhao, H., Storey, B.D., Braatz, R.D., Bazant, M.Z.: Learning the physics of pattern formation from images. Phys. Rev. Lett. 124, 060201, 2020

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions, which helped improve the quality of this work. This work was supported in part by the Croatian Science Foundation under project number HRZZ-MOBODL-2023-08-7617 and IP-2022-10-7261 Analysis of Partial Differential Equations and Shape Optimization (ADESO), the Austrian Science Foundation (FWF) Stand Alone Project number P-35508-N, and the Croatian-Austrian bilateral projects From PDEs to Deep Learning: Advancing Medical Image Processing and Mathematical Aspects of Granular Hydro-dynamics - Modelling, Analysis, and Numerics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Novak.

Additional information

Communicated by I. Fonseca

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andrej Novak and Darko Mitrović contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrovic, D., Novak, A. Navigating the Complex Landscape of Shock Filter Cahn–Hilliard Equation: From Regularized to Entropy Solutions. Arch Rational Mech Anal 248, 105 (2024). https://doi.org/10.1007/s00205-024-02057-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-024-02057-w

Navigation