Abstract
Cellular senescence leads to decreased tissue regeneration and inflammation and is associated with diabetes, neurodegenerative diseases, and tumorigenesis. However, the mechanisms of cellular senescence are not fully understood. Emerging evidence has indicated that c-Jun N-terminal kinase (JNK) signaling is involved in the regulation of cellular senescence. JNK can downregulate hypoxia inducible factor-1α to accelerate hypoxia-induced neuronal cell senescence. The activation of JNK inhibits mTOR activity and triggers autophagy, which promotes cellular senescence. JNK can upregulate the expression of p53 and Bcl-2 and accelerates cancer cell senescence; however, this signaling also mediates the expression of amphiregulin and PD-LI to achieve cancer cell immune evasion and prevents their senescence. The activation of JNK further triggers forkhead box O expression and its target gene Jafrac1 to extend the lifespan of Drosophila. JNK can also upregulate the expression of DNA repair protein poly ADP-ribose polymerase 1 and heat shock protein to delay cellular senescence. This review discusses recent advances in understanding the function of JNK signaling in cellular senescence and includes a comprehensive analysis of the molecular mechanisms underlying JNK-mediated senescence evasion and oncogene-induced cellular senescence. We also summarize the research progress in anti-aging agents that target JNK signaling. This study will contribute to a better understanding of the molecular targets of cellular senescence and provides insights into anti-aging, which may be used to develop drugs for the treatment of aging-related diseases.
Similar content being viewed by others
Data availability
Not applicable.
References
Ahmad S, Khan A, Ali W et al (2021) Fisetin rescues the mice brains against D-galactose-induced oxidative stress, neuroinflammation and memory impairment. Front Pharmacol 12:612078. https://doi.org/10.3389/fphar.2021.612078
Ai L, Xu A, Xu J (2020) Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond. Adv Exp Med Biol 1248:33–59. https://doi.org/10.1007/978-981-15-3266-5_3
Anderson J, Sandhir R, Hamilton ES, Berman NE (2009) Impaired expression of neuroprotective molecules in the HIF-1alpha pathway following traumatic brain injury in aged mice. J Neurotrauma 26(9):1557–1566. https://doi.org/10.1089/neu.2008.0765
Antoniou X, Sclip A, Ploia C, Colombo A, Moroy G, Borsello T (2009) JNK contributes to Hif-1alpha regulation in hypoxic neurons. Molecules 15(1):114–127. https://doi.org/10.3390/molecules15010114
Bourgeois B, Madl T (2018) Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett 592(12):2083–2097. https://doi.org/10.1002/1873-3468.13057
Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562(7728):578–582. https://doi.org/10.1038/s41586-018-0543-y
Casati M, Boccardi V, Ferri E et al (2020) Vitamin E and Alzheimer’s disease: the mediating role of cellular aging. Aging Clin Exp Res 32(3):459–464. https://doi.org/10.1007/s40520-019-01209-3
Castro JP, Fernando R, Reeg S et al (2019) Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation: a novel gain-of-function mechanism. Redox Biol 21:101108. https://doi.org/10.1016/j.redox.2019.101108
Chavez JC, LaManna JC (2003) Hypoxia-inducible factor-1alpha accumulation in the rat brain in response to hypoxia and ischemia is attenuated during aging. Adv Exp Med Biol 510:337–341. https://doi.org/10.1007/978-1-4615-0205-0_55
Chen B, Teng Y, Zhang X, Lv X, Yin Y (2016) Metformin alleviated Aβ-induced apoptosis via the suppression of JNK MAPK signaling pathway in cultured hippocampal neurons. Biomed Res Int 2016:1421430. https://doi.org/10.1155/2016/1421430
Chen Z, Hu K, Feng L et al (2018) Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci 109(6):1753–1763. https://doi.org/10.1111/cas.13618
Chen X, Wu W, Gong B et al (2020) Metformin attenuates cadmium-induced neuronal apoptosis in vitro via blocking ROS-dependent PP5/AMPK-JNK signaling pathway. Neuropharmacology 175:108065. https://doi.org/10.1016/j.neuropharm.2020.108065
Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435. https://doi.org/10.1038/nm.4000
Chinta SJ, Woods G, Demaria M et al (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 22(4):930–940. https://doi.org/10.1016/j.celrep.2017.12.092
Choi BH, Philips MR, Chen Y, Lu L, Dai W (2018) K-Ras Lys-42 is crucial for its signaling, cell migration, and invasion. J Biol Chem 293(45):17574–17581. https://doi.org/10.1074/jbc.RA118.003723
Choi HJ, Alam MB, Baek ME, Kwon YG, Lim JY, Lee SH (2020) Protection against UVB-induced photoaging by Nypa fruticans via inhibition of MAPK/AP-1/MMP-1 signaling. Oxid Med Cell Longev 2020:2905362. https://doi.org/10.1155/2020/2905362
Cindrić A, Krištić J, Martinić Kavur M, Pezer M (2021) Glycosylation and aging. Adv Exp Med Biol 1325:341–373. https://doi.org/10.1007/978-3-030-70115-4_17
Cui L, Li C, Shang Y et al (2021) Chaihu Guizhi Ganjiang decoction ameliorates pancreatic fibrosis via JNK/mTOR signaling pathway. Front Pharmacol 12:679557. https://doi.org/10.3389/fphar.2021.679557
Daitoku H, Fukamizu A (2007) FOXO transcription factors in the regulatory networks of longevity. J Biochem 141(6):769–774. https://doi.org/10.1093/jb/mvm104
de Keizer PL, Packer LM, Szypowska AA et al (2010) Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res 70(21):8526–8536. https://doi.org/10.1158/0008-5472.Can-10-1563
de Magalhaes JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9. https://doi.org/10.1016/j.mad.2017.07.001
Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV (2010) Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci USA 107(21):9660–9664. https://doi.org/10.1073/pnas.1002298107
Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22(2):75–95. https://doi.org/10.1038/s41580-020-00314-w
Diebold L, Chandel NS (2016) Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med 100:86–93. https://doi.org/10.1016/j.freeradbiomed.2016.04.198
Dong Y, Yin S, Jiang C et al (2014) Involvement of autophagy induction in penta-1,2,3,4,6-O-galloyl-β-D-glucose-induced senescence-like growth arrest in human cancer cells. Autophagy 10(2):296–310. https://doi.org/10.4161/auto.27210
D’Souza LC, Dwivedi S, Raihan F et al (2022) Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. Environ Toxicol. https://doi.org/10.1002/tox.23520
Eliopoulos AG, Havaki S, Gorgoulis VG (2016) DNA damage response and autophagy: a meaningful partnership. Front Genet 7:204. https://doi.org/10.3389/fgene.2016.00204
Erdélyi K, Pacher P, Virág L, Szabó C (2013) Role of poly(ADP-ribosyl)ation in a ‘two-hit’ model of hypoxia and oxidative stress in human A549 epithelial cells in vitro. Int J Mol Med 32(2):339–346. https://doi.org/10.3892/ijmm.2013.1397
Essers MA, Weijzen S, de Vries-Smits AM et al (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23(24):4802–2812. https://doi.org/10.1038/sj.emboj.7600476
Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22(3):377–88. https://doi.org/10.1038/cdd.2014.150
Fleury H, Malaquin N, Tu V et al (2019) Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat Commun 10(1):2556. https://doi.org/10.1038/s41467-019-10460-1
Fujishita T, Aoki M, Taketo MM (2011) JNK signaling promotes intestinal tumorigenesis through activation of mTOR complex 1 in Apc(Δ716) mice. Gastroenterology 140(5):1556–63.e6. https://doi.org/10.1053/j.gastro.2011.02.007
Ghorai A, Mahaddalkar T, Thorat R, Dutt S (2020) Sustained inhibition of PARP-1 activity delays glioblastoma recurrence by enhancing radiation-induced senescence. Cancer Lett 490:44–53. https://doi.org/10.1016/j.canlet.2020.06.023
Giannakou ME, Partridge L (2004) The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 14(8):408–412. https://doi.org/10.1016/j.tcb.2004.07.006
Giannakou ME, Goss M, Jacobson J, Vinti G, Leevers SJ, Partridge L (2007) Dynamics of the action of dFOXO on adult mortality in Drosophila. Aging Cell 6(4):429–438. https://doi.org/10.1111/j.1474-9726.2007.00290.x
Gonçalves S, Yin K, Ito Y et al (2021) COX2 regulates senescence secretome composition and senescence surveillance through PGE(2). Cell Rep 34(11):108860. https://doi.org/10.1016/j.celrep.2021.108860
Gonzalez-Rodriguez A, Mas-Gutierrez JA, Mirasierra M et al (2012) Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging. Aging Cell 11(2):284–296. https://doi.org/10.1111/j.1474-9726.2011.00786.x
Gosslau A, Ruoff P, Mohsenzadeh S, Hobohm U, Rensing L (2001) Heat shock and oxidative stress-induced exposure of hydrophobic protein domains as common signal in the induction of hsp68. J Biol Chem 276(3):1814–1821. https://doi.org/10.1074/jbc.M008280200
Grootaert MOJ, Moulis M, Roth L et al (2018) Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 114(4):622–634. https://doi.org/10.1093/cvr/cvy007
Guerreiro R, Bras J (2015) The age factor in Alzheimer’s disease. Genome Med 7:106. https://doi.org/10.1186/s13073-015-0232-5
Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355. https://doi.org/10.1126/science.1140735
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. https://doi.org/10.1126/science.1072994
Hekmatimoghaddam S, Dehghani Firoozabadi A, Zare-Khormizi MR, Pourrajab F (2017) Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Ageing Res Rev 40:120–141. https://doi.org/10.1016/j.arr.2017.10.001
Houssaini A, Breau M, Kebe K et al (2018) mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight 3(3):e93203. https://doi.org/10.1172/jci.insight.93203
Hu L, Wang Y, Chen Z et al (2019) Hsp90 inhibitor SNX-2112 enhances trail-induced apoptosis of human cervical cancer cells via the ROS-mediated JNK-p53-autophagy-DR5 pathway. Oxid Med Cell Longev 2019:9675450. https://doi.org/10.1155/2019/9675450
Jiang J, Zhao W, Tang Q, Wang B, Li X, Feng Z (2019a) Over expression of amphiregulin promoted malignant progression in gastric cancer. Pathol Res Pract 215(10):152576. https://doi.org/10.1016/j.prp.2019.152576
Jiang X, Wang J, Deng X et al (2019b) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18(1):10. https://doi.org/10.1186/s12943-018-0928-4
Jnawali HN, Lee E, Shin A, Park YG, Kim Y (2014) Effect of quercetin in the UV-irradiated human keratinocyte HaCaT cells and a model of its binding To p38 MAPK. Bull Korean Chem Soc 35(9):2787–2790. https://doi.org/10.5012/bkcs.2014.35.9.2787
Jones SA, Lancaster MK (2015) Progressive age-associated activation of JNK associates with conduction disruption in the aged atrium. Mech Ageing Dev 146–148:72–80. https://doi.org/10.1016/j.mad.2015.05.001
Kaeberlein M, Powers RW 3rd, Steffen KK et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196. https://doi.org/10.1126/science.1115535
Kang C, Elledge SJ (2016) How autophagy both activates and inhibits cellular senescence. Autophagy 12(5):898–899. https://doi.org/10.1080/15548627.2015.1121361
Kelleher AM, Setlem R, Dantzer F, DeMayo FJ, Lydon JP, Kraus WL (2021) Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss. Proc Natl Acad Sci USA 118(40):e2109252118. https://doi.org/10.1073/pnas.2109252118
Killick R, Ribe EM, Al-Shawi R et al (2014) Clusterin regulates beta-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol Psychiatry 19(1):88–98. https://doi.org/10.1038/mp.2012.163
Kim JS, Lee YH, Choi DY, Yi HK (2015a) Expression of heat shock proteins (HSPs) in aged skeletal muscles depends on the frequency and duration of exercise training. J Sports Sci Med 14(2):347–353
Kim JY, Yenari MA, Lee JE (2015b) Regulation of inflammatory transcription factors by heat shock protein 70 in primary cultured astrocytes exposed to oxygen-glucose deprivation. Neuroscience 286:272–280. https://doi.org/10.1016/j.neuroscience.2014.11.057
Kiriyama Y, Tani A, Kadoya M, Okamoto R, Nochi H (2020) Induction of PD-L1 by nitric oxide via JNK activation in A172 glioblastoma cells. Biol Pharm Bull 43(6):1020–1022. https://doi.org/10.1248/bpb.b20-00087
Kitamura C, Ogawa Y, Nishihara T, Morotomi T, Terashita M (2003) Transient co-localization of c-Jun N-terminal kinase and c-Jun with heat shock protein 70 in pulp cells during apoptosis. J Dent Res 82(2):91–95. https://doi.org/10.1177/154405910308200203
Lee KS, Iijima-Ando K, Iijima K et al (2009a) JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. J Biol Chem 284(43):29454–29461. https://doi.org/10.1074/jbc.M109.028027
Lee Y-H, Govinda B, Kim J-C et al (2009b) Oxidative stress resistance through blocking Hsp60 translocation followed by SAPK/JNK inhibition in aged human diploid fibroblasts. Cell Biochem Funct 27(1):35–39. https://doi.org/10.1002/cbf.1531
Lee JJ, Lee JH, Ko YG, Hong SI, Lee JS (2010) Prevention of premature senescence requires JNK regulation of Bcl-2 and reactive oxygen species. Oncogene 29(4):561–575. https://doi.org/10.1038/onc.2009.355
Lee MJ, Kim EH, Lee SA et al (2015) Dehydroepiandrosterone prevents linoleic acid-induced endothelial cell senescence by increasing autophagy. Metabolism 64(9):1134–1145. https://doi.org/10.1016/j.metabol.2015.05.006
Lee HJ, Kim SR, Jung YJ, Han JA (2021) Cyclooxygenase-2 induces neoplastic transformation by inhibiting p53-dependent oncogene-induced senescence. Sci Rep 11(1):9853. https://doi.org/10.1038/s41598-021-89220-5
Li WJ, Oh SJ (2010) Diabetic cystopathy is associated with PARP/JNK/mitochondrial apoptotic pathway-mediated bladder apoptosis. Neurourol Urodyn 29(7):1332–1337. https://doi.org/10.1002/nau.20869
Li M, Chiu JF, Mossman BT, Fukagawa NK (2006) Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats. J Biol Chem 281(52):40429–40439. https://doi.org/10.1074/jbc.M606596200
Li J, Deng J, Sheng W, Zuo Z (2012) Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 101(4):564–574. https://doi.org/10.1016/j.pbb.2012.03.002
Li Y, Peng Z, Wang C et al (2018) Novel role of PKR in palmitate-induced Sirt1 inactivation and endothelial cell senescence. Am J Physiol Heart Circ Physiol 315(3):H571–H580. https://doi.org/10.1152/ajpheart.00038.2018
Li WH, Yang YL, Cheng X et al (2020) Baicalein attenuates caspase-independent cells death via inhibiting PARP-1 activation and AIF nuclear translocation in cerebral ischemia/reperfusion rats. Apoptosis 25(5–6):354–369. https://doi.org/10.1007/s10495-020-01600-w
Li WW, Wang HJ, Tan YZ, Wang YL, Yu SN, Li ZH (2021) Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res 403(1):112585. https://doi.org/10.1016/j.yexcr.2021.112585
Lim H, Park H, Kim HP (2015) Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem Pharmacol 96(4):337–348. https://doi.org/10.1016/j.bcp.2015.06.013
Lim CJ, Lee YM, Kang SG et al (2017) Aquatide Activation of SIRT1 reduces cellular senescence through a SIRT1-FOXO1-autophagy axis. Biomol Ther (seoul) 25(5):511–518. https://doi.org/10.4062/biomolther.2017.119
Lin X, Jia Y, Dong X et al (2019) Diplatin, a novel and low-toxicity anti-lung cancer platinum complex, activation of cell death in tumors via a ROS/JNK/p53-dependent pathway, and a low rate of acquired treatment resistance. Front Pharmacol 10:982. https://doi.org/10.3389/fphar.2019.00982
Liu T, Ma X, Ouyang T et al (2018) SIRT1 reverses senescence via enhancing autophagy and attenuates oxidative stress-induced apoptosis through promoting p53 degradation. Int J Biol Macromol 117:225–234. https://doi.org/10.1016/j.ijbiomac.2018.05.174
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
Lorda-Diez CI, Garcia-Riart B, Montero JA, Rodriguez-Leon J, Garcia-Porrero JA, Hurle JM (2015) Apoptosis during embryonic tissue remodeling is accompanied by cell senescence. Aging Us 7(11):974–985. https://doi.org/10.18632/aging.100844
Ma Y, Qi M, An Y et al (2018) Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 17(1):e12709. https://doi.org/10.1111/acel.12709
Ma X, Wang N, Chen K, Zhang C (2021) Oncosuppressive role of MicroRNA-205–3p in gastric cancer through inhibition of proliferation and induction of senescence: oncosuppressive role of MicroRNA-205 in gastric cancer. Transl Oncol 14(11):101199. https://doi.org/10.1016/j.tranon.2021.101199
Madeo F, Eisenberg T, Pietrocola F, Kroemer G (2018) Spermidine in health and disease. Science 359(6374):eaan2788. https://doi.org/10.1126/science.aan2788
Madungwe NB, Feng Y, Lie M et al (2018) Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol 315(1):C28–C43. https://doi.org/10.1152/ajpcell.00230.2017
Mai L, He G, Chen J et al (2021) Proteomic analysis of hypoxia-induced senescence of human bone marrow mesenchymal stem cells. Stem Cells Int 2021:5555590. https://doi.org/10.1155/2021/5555590
Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015) DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet 6:94. https://doi.org/10.3389/fgene.2015.00094
Martínez de Toda I, De la Fuente M (2015) The role of Hsp70 in oxi-inflamm-aging and its use as a potential biomarker of lifespan. Biogerontology 16(6):709–721. https://doi.org/10.1007/s10522-015-9607-7
Massip-Copiz M, Clauzure M, Valdivieso ÁG, Santa-Coloma TA (2018) Epiregulin (EREG) is upregulated through an IL-1β autocrine loop in Caco-2 epithelial cells with reduced CFTR function. J Cell Biochem 119(3):2911–2922. https://doi.org/10.1002/jcb.26483
Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639
Morrow G, Battistini S, Zhang P, Tanguay RM (2004) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 279(42):43382–43385. https://doi.org/10.1074/jbc.C400357200
Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283. https://doi.org/10.1038/nature01789
Nakamura M, Ohsawa S, Igaki T (2014) Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in Drosophila. Nat Commun 5:5264. https://doi.org/10.1038/ncomms6264
Nassour J, Martien S, Martin N et al (2016) Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun 7:10399. https://doi.org/10.1038/ncomms10399
Nguyen LT, Lee YH, Sharma AR et al (2017) Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J Physiol Pharmacol 21(2):205–213. https://doi.org/10.4196/kjpp.2017.21.2.205
Nogueira V, Park Y, Chen CC et al (2008) Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14(6):458–470. https://doi.org/10.1016/j.ccr.2008.11.003
Noren Hooten N, Evans MK (2017) Techniques to induce and quantify cellular senescence. J vis Exp. https://doi.org/10.3791/55533
Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA 102(12):4494–4499. https://doi.org/10.1073/pnas.0500749102
Ohanna M, Giuliano S, Bonet C et al (2011) Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev 25(12):1245–1261. https://doi.org/10.1101/gad.625811
Omer A, Patel D, Moran JL et al (2020) Autophagy and heat-shock response impair stress granule assembly during cellular senescence. Mech Ageing Dev 192:111382. https://doi.org/10.1016/j.mad.2020.111382
Ordog K, Horvath O, Eros K et al (2021) Mitochondrial protective effects of PARP-inhibition in hypertension-induced myocardial remodeling and in stressed cardiomyocytes. Life Sci 268:118936. https://doi.org/10.1016/j.lfs.2020.118936
Ou X, Lee MR, Huang X, Messina-Graham S, Broxmeyer HE (2014) SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 32(5):1183–1194. https://doi.org/10.1002/stem.1641
Palmer AK, Gustafson B, Kirkland JL, Smith U (2019) Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 62(10):1835–1841. https://doi.org/10.1007/s00125-019-4934-x
Pommier Y, O’Connor MJ, de Bono J (2016) Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8(362):362ps17. https://doi.org/10.1126/scitranslmed.aaf9246
Proctor CJ, Lorimer IA (2011) Modelling the role of the Hsp70/Hsp90 system in the maintenance of protein homeostasis. PLoS One 6(7):e22038. https://doi.org/10.1371/journal.pone.0022038
Qi M, Zhou H, Fan S et al (2013) mTOR inactivation by ROS-JNK-p53 pathway plays an essential role in psedolaric acid B induced autophagy-dependent senescence in murine fibrosarcoma L929 cells. Eur J Pharmacol 715(1–3):76–88. https://doi.org/10.1016/j.ejphar.2013.05.051
Qian Y, Deng J, Geng L et al (2008) TLR4 signaling induces B7–H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest 26(8):816–821. https://doi.org/10.1080/07357900801941852
Regulski MJ (2017) Cellular senescence: what, why, and how. Wounds 29(6):168–174
Rhinn M, Ritschka B, Keyes WM (2019) Cellular senescence in development, regeneration and disease. Development 146(20):dev151837. https://doi.org/10.1242/dev.151837
Ross BX, Jia L, Kong D, Wang T et al (2022) Hypoxia-inducible factor-1α in rods is neuroprotective following retinal detachment. Invest Ophthalmol vis Sci 63(11):7. https://doi.org/10.1167/iovs.63.11.7
Rumora L, Lovric J, Sairam MR, Maysinger D (2007) Impairments of heat shock protein expression and MAPK translocation in the central nervous system of follitropin receptor knockout mice. Exp Gerontol 42(7):619–628. https://doi.org/10.1016/j.exger.2007.03.001
Sagiv A, Burton DG, Moshayev Z et al (2016) NKG2D ligands mediate immunosurveillance of senescent cells. Aging 8(2):328–344. https://doi.org/10.18632/aging.100897
Sarszegi Z, Bognar E, Gaszner B et al (2012) BGP-15, a PARP-inhibitor, prevents imatinib-induced cardiotoxicity by activating Akt and suppressing JNK and p38 MAP kinases. Mol Cell Biochem 365(1–2):129–137. https://doi.org/10.1007/s11010-012-1252-8
Sedmíková M, Petr J, Dörflerová A et al (2013) Inhibition of c-Jun N-terminal kinase (JNK) suppresses porcine oocyte ageing in vitro.pdf. Czech J Anim Sci 58(No. 12):535–545. https://doi.org/10.17221/7088-cjas
Shanware NP, Bray K, Eng CH et al (2014) Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nat Commun 5:4900. https://doi.org/10.1038/ncomms5900
Shin EJ, Lee JS, Hong S, Lim TG, Byun S (2019) Quercetin directly targets JAK2 and PKC delta and prevents UV-Induced photoaging in human skin. Int J Mol Sci 20(21):5262. https://doi.org/10.3390/ijms20215262
Snodgrass RG, Boss M, Zezina E et al (2016) Hypoxia potentiates palmitate-induced pro-inflammatory activation of primary human macrophages. J Biol Chem 291(1):413–424. https://doi.org/10.1074/jbc.M115.686709
Song ZF, Ji XP, Li XX, Wang SJ, Wang SH, Zhang Y (2008) Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation. J Cell Mol Med 12(4):1220–1228. https://doi.org/10.1111/j.1582-4934.2008.00183.x
Song YJ, Zong ZM, Liu HZ et al (2012) Heme oxygenase-1 regulates the JNK signaling pathway through the MLK3-MKK7-JNK3 signaling module in brain ischemia injury. Brain Res 1429:1–8. https://doi.org/10.1016/j.brainres.2011.10.021
Stricker SA, Ravichandran N (2017) The potential roles of c-Jun N-terminal kinase (JNK) during the maturation and aging of oocytes produced by a marine protostome worm. Zygote 25(6):686–696. https://doi.org/10.1017/s0967199417000533
Sun L, Li FH, Han C et al (2021) Alterations in mitochondrial biogenesis and respiratory activity, inflammation of the senescence-associated secretory phenotype, and lipolysis in the perirenal fat and liver of rats following lifelong exercise and detraining. FASEB J 35(10):e21890. https://doi.org/10.1096/fj.202100868R
Sung JY, Kim SG, Kim JR, Choi HC (2021) SIRT1 suppresses cellular senescence and inflammatory cytokine release in human dermal fibroblasts by promoting the deacetylation of NF-κB and activating autophagy. Exp Gerontol 150:111394. https://doi.org/10.1016/j.exger.2021.111394
Suzuki M, Bandoski C, Bartlett JD (2015) Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med 89:369–378. https://doi.org/10.1016/j.freeradbiomed.2015.08.015
Szanto M, Brunyanszki A, Kiss B et al (2012) Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 69(24):4079–4092. https://doi.org/10.1007/s00018-012-1003-8
Tabibzadeh S (2021) Signaling pathways and effectors of aging. Front Biosci (landmark Ed) 26(1):50–96. https://doi.org/10.2741/4889
Tecleab A, Zhang X, Sebti SM (2014) Ral GTPase down-regulation stabilizes and reactivates p53 to inhibit malignant transformation. J Biol Chem 289(45):31296–31309. https://doi.org/10.1074/jbc.M114.565796
Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol 46(5):355–362. https://doi.org/10.1016/j.exger.2010.09.002
Tu Z, Aird KM, Bitler BG et al (2011) Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell 21(6):1077–1091. https://doi.org/10.1016/j.devcel.2011.10.010
van den Berg MC, van Gogh IJ, Smits AM et al (2013) The small GTPase RALA controls c-Jun N-terminal kinase-mediated FOXO activation by regulation of a JIP1 scaffold complex. J Biol Chem 288(30):21729–21741. https://doi.org/10.1074/jbc.M113.463885
Van Meter M, Simon M, Tombline G et al (2016) JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Rep 16(10):2641–2650. https://doi.org/10.1016/j.celrep.2016.08.006
van Vliet T, Varela-Eirin M, Wang B et al (2021) Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol Cell 81(9):2041-2052.e6. https://doi.org/10.1016/j.molcel.2021.03.018
Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620. https://doi.org/10.1038/426620a
Villot R, Poirier A, Bakan I et al (2021) ZNF768 links oncogenic RAS to cellular senescence. Nat Commun 12(1):4841. https://doi.org/10.1038/s41467-021-24932-w
Wang MC, Bohmann D, Jasper H (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5(5):811–816. https://doi.org/10.1016/s1534-5807(03)00323-x
Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121(1):115–125. https://doi.org/10.1016/j.cell.2005.02.030
Wang D, Zhang YZ, Yang B et al (2011) p21 WAF1 and hypoxia/reoxygenation-induced premature senescence of H9c2 cardiomyocytes. Folia Histochem Cytobiol 49(3):445–451. https://doi.org/10.5603/fhc.2011.0063
Wang FZ, Fei HR, Cui YJ et al (2014) The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis 19(9):1389–1398. https://doi.org/10.1007/s10495-014-1010-3
Wu L, Wang C, Li J et al (2017) Hepatoprotective effect of quercetin via TRAF6/JNK pathway in acute hepatitis. Biomed Pharmacother 96:1137–1146. https://doi.org/10.1016/j.biopha.2017.11.109
Xing J, Ying Y, Mao C et al (2018) Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat Commun 9(1):2020. https://doi.org/10.1038/s41467-018-04453-9
Xu Y, Huang S, Liu ZG, Han J (2006) Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281(13):8788–8795. https://doi.org/10.1074/jbc.M508135200
Xu Q, Long Q, Zhu D et al (2019) Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression. Aging Cell 18(6):e13027. https://doi.org/10.1111/acel.13027
Xu J, Xiao X, Yan B et al (2022) Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression. Cancer Cell Int 22(1):39. https://doi.org/10.1186/s12935-022-02468-3
Yamaguchi Y, Madhyastha H, Madhyastha R et al (2016) Arsenic acid inhibits proliferation of skin fibroblasts, and increases cellular senescence through ROS mediated MST1-FOXO signaling pathway. J Toxicol Sci 41(1):105–113. https://doi.org/10.2131/jts.41.105
Yang LW, Song M, Li YL et al (2019) l-Carnitine inhibits the senescence-associated secretory phenotype of aging adipose tissue by JNK/p53 pathway. Biogerontology 20(2):203–211. https://doi.org/10.1007/s10522-018-9787-z
Yang J, Liu M, Hong D, Zeng M, Zhang X (2021) The paradoxical role of cellular senescence in cancer. Front Cell Dev Biol 9:722205. https://doi.org/10.3389/fcell.2021.722205
Yao S, Fan LY, Lam EW (2018) The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 50:77–89. https://doi.org/10.1016/j.semcancer.2017.11.018
Ye JL, Han YT, Chen XH et al (2014) L-Carnitine attenuates H2O2-induced neuron apoptosis via inhibition of endoplasmic reticulum stress. Neurochem Int 78:86–95. https://doi.org/10.1016/j.neuint.2014.08.009
Yeo D, Kang C, Ji LL (2020) Aging alters acetylation status in skeletal and cardiac muscles. Geroscience 42(3):963–976. https://doi.org/10.1007/s11357-020-00171-7
Yoon SO, Park DJ, Ryu JC et al (2012) JNK3 perpetuates metabolic stress induced by Abeta peptides. Neuron 75(5):824–837. https://doi.org/10.1016/j.neuron.2012.06.024
Yu SW, Wang H, Poitras MF et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263. https://doi.org/10.1126/science.1072221
Yu S, Wang X, Geng P et al (2017) Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J Pineal Res. https://doi.org/10.1111/jpi.12405
Zhang FX, Chen ML, Shan QJ et al (2007) Hypoxia reoxygenation induces premature senescence in neonatal SD rat cardiomyocytes. Acta Pharmacol Sin 28(1):44–51. https://doi.org/10.1111/j.1745-7254.2007.00488.x
Zhang X, Zhao G, Zhang Y et al (2018) Activation of JNK signaling in osteoblasts is inversely correlated with collagen synthesis in age-related osteoporosis. Biochem Biophys Res Commun 504(4):771–776. https://doi.org/10.1016/j.bbrc.2018.08.094
Zhang D, Chen Y, Xu X et al (2020a) Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling. Clin Exp Pharmacol Physiol 47(3):466–477. https://doi.org/10.1111/1440-1681.13207
Zhang Y, Zhou S, Cai W et al (2020b) Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 22(1):265–276. https://doi.org/10.3892/mmr.2020.11102
Zhang S, Liu W, Wang P et al (2021) Activation of HSP70 impedes tert-butyl hydroperoxide (t-BHP)-induced apoptosis and senescence of human nucleus pulposus stem cells via inhibiting the JNK/c-Jun pathway. Mol Cell Biochem 476(5):1979–1994. https://doi.org/10.1007/s11010-021-04052-1
Zhang H, Gong W, Wu S, Perrett S (2022) Hsp70 in redox homeostasis. Cells. https://doi.org/10.3390/cells11050829
Zhao K, Zhang Q, Flanagan SA et al (2021) Cytidine deaminase APOBEC3A regulates PD-L1 expression in cancer cells in a JNK/c-JUN-dependent manner. Mol Cancer Res 19(9):1571–1582. https://doi.org/10.1158/1541-7786.MCR-21-0219
Zhao Y, Kuca K, Wu W et al (2022) Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement 18(1):152–158. https://doi.org/10.1002/alz.12370
Zhu FL, Li YL, Zhang JM et al (2013) Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 8(9):e74535
Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658. https://doi.org/10.1111/acel.12344
Zhu Y, Doornebal EJ, Pirtskhalava T et al (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging 9(3):955–963. https://doi.org/10.18632/aging.101202
Zhu H, Blake S, Kusuma FK, Pearson RB, Kang J, Chan KT (2020) Oncogene-induced senescence: from biology to therapy. Mech Ageing Dev 187:111229. https://doi.org/10.1016/j.mad.2020.111229
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant no. 31972741); State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products (2021DG700024-KF202204); the Excelence project PrF UHK 2216 /2023-2024 Czech Republic; Research program of University of Granada, Spain.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Deng, Y., Adam, V., Nepovimova, E. et al. c-Jun N-terminal kinase signaling in cellular senescence. Arch Toxicol 97, 2089–2109 (2023). https://doi.org/10.1007/s00204-023-03540-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00204-023-03540-1