Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Multifunctional electrospun polyvinyl alcohol/gellan gum/polycaprolactone nanofibrous membrane containing pentoxifylline to accelerate wound healing

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this research, a novel drug-loaded nanofibrous membrane composed of polyvinyl alcohol/gellan gum (PVA/GG) on polycaprolactone (PCL) as a scaffold to deliver pentoxifylline (PTX) was fabricated for wound healing. The morphology and mean fiber diameter of scaffolds were characterized. Mechanical properties, wettability, degradation rate, and drug delivery were evaluated for each fibrous scaffold. The cytotoxicity evaluation of the samples was conducted using human dermal fibroblasts (HDFs). The results confirmed that PVA/GG with the ratio of 50:50 has an optimum fibers’ diameter ranging between 86 and 110 nm, over 76% of porosity, and a desired mechanical properties for skin tissue engineering. Ultimate tensile strength (UTS) and elastic modulus of the PTX-loaded scaffold (PVA/GG 50:50) decreased compared with the non-loaded one. Adding 20 mg/ml PTX to the scaffold caused a considerable increase in the samples’ degradation. Furthermore, the PTX-loaded scaffold showed a higher wettability and roughness in comparison with the one without PTX. The PTX was released from the fibrous membrane up to 120 h. HDFs’ viability and adhesion were significantly higher for drug-loaded scaffolds compared with the control group. In summary, the nanofibrous composite scaffold made of PTX-PVA-GG/PCL could be used as a suitable wound dressing for speeding up wound regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nilforoushzadeh MA et al (2017) Regenerative medicine applications in wound care. Curr Stem Cell Res Ther 12(8):658–674

    Article  CAS  Google Scholar 

  2. Li Y et al (2015) Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mater Chem B 3(17):3498–3507

    Article  CAS  Google Scholar 

  3. Gajiwala K, Gajiwala AL (2004) Evaluation of lyophilized, gamma-irradiated amnion as a biological dressing. Cell Tissue Bank 5(2):73–80

    Article  Google Scholar 

  4. Lee SH, Jeong SK, Ahn SK (2006) An update of the defensive barrier function of skin. Yonsei Med J 47(3):293–306

    Article  CAS  Google Scholar 

  5. Flanagan M (2000) The physiology of wound healing. J Wound Care 9(6):299–300

    Article  CAS  Google Scholar 

  6. Atiyeh BS, Hayek SN, Gunn SW (2005) New technologies for burn wound closure and healing—review of the literature. Burns 31(8):944–956

    Article  Google Scholar 

  7. Mabrouk M, Beherei HH, Das DB (2020) Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater Sci Eng C 110:110716

    Article  CAS  Google Scholar 

  8. Saudi A et al (2019) Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly (vinyl alcohol) and poly (glycerol sebacate) fibers. Mater Sci Eng, C 104:110005

    Article  CAS  Google Scholar 

  9. Abel SB, Ballarin FM, Abraham GA (2020) Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions. Nanotechnology 31(17):172002

    Article  CAS  Google Scholar 

  10. Bigham A et al (2019) Electrophoretically deposited mesoporous magnesium silicate with ordered nanopores as an antibiotic-loaded coating on surface-modified titanium. Mater Sci Eng C 96:765–775

    Article  CAS  Google Scholar 

  11. Saudi A, Zebarjad SM, Alipour H, Katoueizadeh E, Alizadeh A, Rafienia M 2022) A study on the role of multi-walled carbon nanotubes on the properties of electrospun poly (caprolactone)/poly (glycerol sebacate) scaffold for nerve tissue applications. Mater Chem Phys 125868

  12. Gugulothu D, Barhoum A, Nerella R, Ajmer R, Bechlany M (2018) Fabrication of nanofibers: electrospinning and non-electrospinning techniques. Handb Nanofibers 1–34

  13. Saudi A, Zebarjad SM, Salehi H, Katoueizadeh E, Alizadeh A (2022) Assessing physicochemical, mechanical, and in vitro biological properties of polycaprolactone/poly (glycerol sebacate)/hydroxyapatite composite scaffold for nerve tissue engineering. Mater Chem Phys 275:125224

    Article  CAS  Google Scholar 

  14. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  15. Vashisth P, Pruthi PA, Singh RP, Pruthi V (2014) Process optimization for fabrication of gellan based electrospun nanofibers. Carbohyd Polym 109:16–21

    Article  CAS  Google Scholar 

  16. Sattary M, Kefayat A, Bigham A, Rafienia M (2020) Polycaprolactone/gelatin/hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Mater Technol 37:1–14

    Google Scholar 

  17. Saudi A, Rafienia M, Zargar Kharazi A, Salehi H, Zarrabi A, Karevan M (2019) Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: synthesis, electrospinning, and characterization. Polym Adv Technol 30(6):1427–1440

    Article  CAS  Google Scholar 

  18. Baghbadorani MA, Bigham A, Rafienia M, Salehi H (2021) A ternary nanocomposite fibrous scaffold composed of poly (ε-caprolactone)/gelatin/gehlenite (Ca2Al2SiO7): Physical, chemical, and biological properties in vitro. Polym Adv Technol 32(2):582–598

    Article  CAS  Google Scholar 

  19. Rastegar S, Mehdikhani M, Bigham A, Poorazizi E, Rafienia M (2021) Polyglycerol sebacate/polycaprolactone/carbon quantum dots fibrous scaffold as a multifunctional platform for cardiac tissue engineering. Mater Chem Phys 266:124543

    Article  CAS  Google Scholar 

  20. Duan H et al (2013) Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes. Int J Nanomed 8:2077

    Google Scholar 

  21. Karbowniczek JE, Kaniuk Ł, Berniak K, Gruszczyński A, Stachewicz U (2021) Enhanced cells anchoring to electrospun hybrid scaffolds with PHBV and HA particles for bone tissue regeneration. Front Bioeng Biotech 9:70

    Article  Google Scholar 

  22. Acik G, Altinkok C, Tasdelen MA (2018) Synthesis and characterization of polypropylene-graft-poly (l-lactide) copolymers by CuAAC click chemistry. J Polym Sci Part A Polym Chem 56(22):2595–2601

    Article  CAS  Google Scholar 

  23. Acik G, Sey E, Tasdelen M (2018) Polypropylene-based graft copolymers via CuAAC click chemistry. Express Polym Lett 12:418

    Article  CAS  Google Scholar 

  24. Joseph B, Augustine R, Kalarikkal N, Thomas S, Seantier B, Grohens Y (2019) Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater Today Commun 19:319–335

    Article  CAS  Google Scholar 

  25. Zheng Y et al (2018) Gelatin-based hydrogels blended with gellan as an injectable wound dressing. ACS Omega 3(5):4766–4775

    Article  CAS  Google Scholar 

  26. Azam NM, Amin K (2017) The physical and mechanical properties of gellan gum films incorporated manuka honey as wound dressing materials. In: IOP Conference Series: Materials Science and Engineering 209(1):012027.

  27. Vashisth P, Nikhil K, Roy P, Pruthi PA, Singh RP, Pruthi V (2016) A novel gellan–PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization. Carbohyd Polym 136:851–859

    Article  CAS  Google Scholar 

  28. Cencetti C et al (2012) Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax. Carbohyd Polym 90(3):1362–1370

    Article  CAS  Google Scholar 

  29. Matar GH, Andac M (2020) Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels. Polym Bull 1–19

  30. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol 167(2–3):283–293

    Article  CAS  Google Scholar 

  31. Marques LJ, Zheng L, Poulakis N, Guzman J, Costabel U (1999) Pentoxifylline inhibits TNF-α production from human alveolar macrophages. Am J Respir Crit Care Med 159(2):508–511

    Article  CAS  Google Scholar 

  32. Ahmadi M, Khalili H (2016) Potential benefits of pentoxifylline on wound healing. Expert Rev Clin Pharmacol 9(1):129–142

    Article  CAS  Google Scholar 

  33. Kornreich B, Enyeart M, Jesty S, Nydam D, Divers T (2010) The effects of pentoxifylline on equine platelet aggregation. J Vet Intern Med 24(5):1196–1202

    Article  CAS  Google Scholar 

  34. Amini A, Velaei K, Bayat M, Dadpay M, Nourozian M (2013) The effects of pentoxifylline on the wound healing process in a rat experimental pressure sore model. Anat Sci J 10(1):15–24

    Google Scholar 

  35. Babaei S, Bayat M (2015) Pentoxifylline accelerates wound healing process by modulating gene expression of MMP-1, MMP-3, and TIMP-1 in normoglycemic rats. J Invest Surg 28(4):196–201

    Article  Google Scholar 

  36. Najafi E et al (2018) Topical pentoxifylline for pressure ulcer treatment: a randomized, double-blind, placebo-controlled clinical trial. J Wound Care 27(8):495–502

    Article  Google Scholar 

  37. Hassan I, Dorjay K, Anwar P (2014) Pentoxifylline and its applications in dermatology. Indian Dermatol Online J 5(4):510

    Article  Google Scholar 

  38. Aghajani A, Kazemi T, Enayatifard R, Amiri FT, Narenji M (2020) Investigating the skin penetration and wound healing properties of niosomal pentoxifylline cream. Eur J Pharm Sci 151:105434

    Article  CAS  Google Scholar 

  39. Lin H-Y, Yeh C-T (2010) Alginate-crosslinked chitosan scaffolds as pentoxifylline delivery carriers. J Mater Sci Mater Med 21(5):1611–1620

    Article  CAS  Google Scholar 

  40. Amini F, Semnani D, Karbasi S, Banitaba SN (2019) A novel bilayer drug-loaded wound dressing of PVDF and PHB/Chitosan nanofibers applicable for post-surgical ulcers. Int J Polym Mater Polym Biomater 68(13):772–777

    Article  CAS  Google Scholar 

  41. Toloue EB, Karbasi S, Salehi H, Rafienia M (2019) Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Mater Sci Eng, C 99:1075–1091

    Article  CAS  Google Scholar 

  42. Li Z, Wang C (2013) Effects of working parameters on electrospinning. In one-dimensional nanostructures. Springer, pp 15–28

    Book  Google Scholar 

  43. Castkova K et al (2020) Structure–properties relationship of electrospun PVDF fibers. Nanomaterials 10(6):1221

    Article  CAS  Google Scholar 

  44. Mehta PP, Pawar VS (2018) Electrospun nanofiber scaffolds: technology and applications. In applications of nanocomposite materials in drug delivery. Elsevier, pp 509–573

    Google Scholar 

  45. Gharibi R, Yeganeh H, Rezapour-Lactoee A, Hassan ZM (2015) Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations. ACS Appl Mater Interfaces 7(43):24296–24311. https://doi.org/10.1021/acsami.5b08376

    Article  CAS  Google Scholar 

  46. Amini S et al (2020) Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: in vitro and in vivo study. Int J Biol Macromol 159:154–173

    Article  CAS  Google Scholar 

  47. Zaman HU, Islam J, Khan MA, Khan RA (2011) Physico-mechanical properties of wound dressing material and its biomedical application. J Mech Behav Biomed Mater 4(7):1369–1375

    Article  CAS  Google Scholar 

  48. Teixeira MA, Amorim MTP, Felgueiras HP (2020) Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers 12(1):7

    Article  CAS  Google Scholar 

  49. Gallagher A, Ní Annaidh A, Bruyère K (2012) Dynamic tensile properties of human skin. In: IRCOBI Conference 2012, 12–14 September 2012, Dublin (Ireland), 2012: International Research Council on the Biomechanics of Injury.

  50. Annaidh AN, Bruyère K, Destrade M, Gilchrist MD, Otténio M (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5(1):139–148

    Article  Google Scholar 

  51. Shuwaili AHA, Rasool BKA, Abdulrasool AA (2016) Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm 102:101–114

    Article  Google Scholar 

  52. Qiang Y, Zhang S, Tan B, Chen S (2018) Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros Sci 133:6–16

    Article  CAS  Google Scholar 

  53. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2010) Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Mater Sci Eng, C 30(8):1129–1136

    Article  CAS  Google Scholar 

  54. Mermoux M, Chabre Y, Rousseau A (1991) FTIR and 13C NMR study of graphite oxide. Carbon 29(3):469–474. https://doi.org/10.1016/0008-6223(91)90216-6

    Article  CAS  Google Scholar 

  55. Silva-Correia J et al (2011) Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J Tissue Eng Regen Med 5(6):e97–e107

    Article  CAS  Google Scholar 

  56. Hu K, Zhuang J, Ding J, Ma Z, Wang F, Zeng X (2017) Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corros Sci 125:68–76

    Article  CAS  Google Scholar 

  57. Moore DJ, Sills RH, Mendelsohn R (1995) Peroxidation of erythrocytes: FTIR spectroscopy studies of extracted lipids, isolated membranes, and intact cells. Biospectroscopy 1(2):133–140

    Article  CAS  Google Scholar 

  58. Lin H-Y, Yeh C-T (2010) Controlled release of pentoxifylline from porous chitosan-pectin scaffolds. Drug Delivery 17(5):313–321

    Article  CAS  Google Scholar 

  59. Zhu H, Nyström M (1998) Cleaning results characterized by flux, streaming potential and FTIR measurements. Colloids Surf A Physicochem Eng Asp 138(2):309–321. https://doi.org/10.1016/S0927-7757(97)00072-1

    Article  CAS  Google Scholar 

  60. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(1):153–166. https://doi.org/10.1016/S0040-6031(02)00523-3

    Article  CAS  Google Scholar 

  61. van Oss CJ (2020) Cell Interactions and surface hydrophilicity: influence of Lewis acid-base and electrostatic forces In cell electrophoresis. CRC Press, pp 219–239

    Google Scholar 

  62. Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R (2013) Superhydrophobic electrospun nanofibers. J Mater Chem A 1(6):1929–1946

    Article  CAS  Google Scholar 

  63. Silvestro I et al (2020) Hyaluronic acid reduces bacterial fouling and promotes fibroblasts’ adhesion onto chitosan 2D-wound dressings. Int J Mol Sci 21(6):2070

    Article  CAS  Google Scholar 

  64. Raja IS et al. (2022) Predominant factor influencing cellular behaviors on electrospun nanofibrous scaffolds: wettability or surface morphology? Mater Des 110580

  65. Hayes T, Su B (2011) Wound dressings. In electrospinning for tissue regeneration. Elsevier, pp 317–339

    Book  Google Scholar 

  66. Bettencourt AF et al (2010) Biodegradation of acrylic-based resins: A review. Dent Mater 26(5):e171–e180

    Article  CAS  Google Scholar 

  67. Kim H-S, Kim H-J (2008) Enhanced hydrolysis resistance of biodegradable polymers and bio-composites. Polym Degrad Stab 93(8):1544–1553

    Article  CAS  Google Scholar 

  68. Kumar SSD, Abrahamse H (2020) Advancement of nanobiomaterials to deliver natural compounds for tissue engineering applications. Int J Mol Sci 21(18):6752

    Article  CAS  Google Scholar 

  69. Milosevic M et al (2020) Preparation and modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci Rep 10(1):1–12

    Article  Google Scholar 

  70. Yan E et al (2020) pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Deliv Sci Technol 55:101455

    Article  CAS  Google Scholar 

  71. Sun X-Z, Williams GR, Hou X-X, Zhu L-M (2013) Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohyd Polym 94(1):147–153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this work by the University of Isfahan (financial and scientific) and Tehran University of Medical Sciences (scientific).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Mehdikhani or Mohammad Amir Amirkhani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahravi, Z., Mehdikhani, M., Amirkhani, M.A. et al. Multifunctional electrospun polyvinyl alcohol/gellan gum/polycaprolactone nanofibrous membrane containing pentoxifylline to accelerate wound healing. Polym. Bull. 80, 2217–2237 (2023). https://doi.org/10.1007/s00289-022-04446-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04446-1

Keywords

Navigation