Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Vortex interactions of two burst-and-coast swimmers in a side-by-side arrangement

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Both schooling behavior and burst-and-coast gait could improve fish swimming performance. The extent to which fish can improve their swimming performance by combining these two strategies is still unknown. By examining two self-propelled pitching foils positioned side-by-side at different duty cycles (DC), we examine swimming speed and cost of transport efficiency (CoT) using the open-source immersed boundary software IBAMR. We find that a stable schooling formation can only be maintained if both foils employ similar and moderate DC values. In these cases, vortex interactions increase foils’ lateral movements, but not their swimming speed or efficiency. Additionally, we examine vortex interactions in both “schooling" and “fission" scenarios (which are determined by DC). The research provides useful insights into fish behavior and valuable information for designing bio-inspired underwater robots.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

For any access to data or material presented in the manuscript, contact the corresponding author.

References

  1. Lighthill, M.J.: Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech. 1, 413–446 (1969)

    Article  Google Scholar 

  2. Weihs, D.: Energetic advantages of burst swimming of fish. J. Theor. Biol. 48, 215–229 (1978)

    Article  Google Scholar 

  3. Akoz, E., Moored, K.W.: Unsteady propulsion by an intermittent swimming gait. J. Fluid Mech. 834, 149–172 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gupta, S., Thekkethil, N., Agrawal, A., Hourigan, K., Thompson, M.C., Sharma, A.: Body-caudal fin fish-inspired self-propulsion study on burst-and-coast and continuous swimming of a hydrofoil model. Phys. Fluids 33, 091905 (2021)

    Article  Google Scholar 

  5. Weihs, D.: Hydromechanics of fish schooling. Nature 241, 290–291 (1973)

    Article  Google Scholar 

  6. Becker, A.D., Masoud, H., Newbolt, J.W., Shelley, M., Ristroph, L.: Hydrodynamic schooling of flapping swimmers. Nat. Commun. 6, 8541 (2015)

    Article  Google Scholar 

  7. Ristroph, L., Zhang, J.: Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101, 194502 (2008)

    Article  Google Scholar 

  8. Filella, A., Nadal, F., Sire, C., Kanso, E., Eloy, C.: Model of collective fish behavior with hydrodynamic interactions. Phys. Rev. Lett. 120, 198101 (2018)

    Article  Google Scholar 

  9. Oza, A.U., Ristroph, L., Shelley, M.J.: Lattices of hydrodynamically interacting flapping swimmers. Phys. Rev. X 9, 041024 (2019)

    Google Scholar 

  10. Li, L., Nagy, M., Graving, J.M., Bak-Coleman, J., Xie, G., Couzin, I.D.: Vortex phase matching as a strategy for schooling in robots and in fish. Nat. Commun. 11, 5408 (2008)

    Article  Google Scholar 

  11. Gleiss, A.C., Jorgensen, S.J., Liebsch, N., Sala, J.E., Norman, B., Hays, G.C., Quintana, F., Grundy, E., Campagn, C., Trites, A.W., Bloc, B.A., Wilson, R.P.: Convergent evolution in locomotory patterns of flying and swimming animals. Nat. Commun. 2, 352 (2011)

    Article  Google Scholar 

  12. Muller, U., Stamhuis, E., Videler, J.: Hydrodynamics of unsteady fish swimming and the effects of body size: comparing the flow fields of fish larvae and adults. J. Exp Biol. 203, 193–206 (2000)

    Article  Google Scholar 

  13. Wu, G., Yang, Y., Zeng, L.: Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi). J. Exp Biol. 210, 2181–2191 (2007)

    Article  Google Scholar 

  14. Li, G., Ashraf, I., François, B., Kolomenskiy, D., Lechenault, F., Godoy-Diana, R., Thiria, B.: Burst-and-coast swimmers optimize gait by adapting unique intrinsic cycle. Commun. Biol. 4, 40 (2021)

    Article  Google Scholar 

  15. Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B 179, 125–138 (1971)

    Article  Google Scholar 

  16. Videler, J., Weihs, D.: Energetic advantages of burst-and-coast swimming of fish at high speeds. J. Theor. Biol. 97, 169–178 (1982)

    Google Scholar 

  17. Blake, R.: Functional design and burst-and-coast swimming in fishes. Can. J. Zool. 61, 2491–2494 (1983)

    Article  Google Scholar 

  18. Das, A., Shukla, R.K., Govardhan, R.N.: Universal scaling laws for propulsive performance of thrust producing foils undergoing continuous or intermittent pitching. Fluids 7, 142 (2022)

    Article  Google Scholar 

  19. Chung, M.: On burst-and-coast swimming performance in fish-like locomotion. Bioinspir. Biomimet. 718, 321–346 (2009)

    Google Scholar 

  20. Akoz, E., Han, P., Liu, G., Dong, H.B., Moored, K.W.: Large-amplitude intermittent swimming in viscous and inviscid flows. AIAA J. 57, 9 (2019)

    Article  Google Scholar 

  21. Couzin, I.D., Li, L.: Animal locomotion: the benefits of swimming together. elife 12, 86807 (2023)

    Article  Google Scholar 

  22. Thandiackal, B., Lauder, G.V.: In-line swimming dynamics revealed by fish interacting with a robotic mechanism. elife 12, 81392 (2023)

    Article  Google Scholar 

  23. Alam, M.M.: Schooling benefits from a system of active and passive hydrofoils. J. Fluids Struct. 115, 103760 (2022)

    Article  Google Scholar 

  24. Deng, J., Shao, X.M., Yu, Z.S.: Hydrodynamic studies on two travelling wavy foils in tandem arrangement. Phys. Fluids 19, 113104 (2007)

    Article  MATH  Google Scholar 

  25. Akhtar, I., Mittal, R., Lauder, G.V., Drucker, E.: Hydrodynamics of a biologically inspired tandem flapping foil configuration. Theor. Comput. Fluid Dyn. 21, 155–170 (2007)

    Article  MATH  Google Scholar 

  26. Kim, S., Huang, W.X., Sung, H.J.: Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511–521 (2010)

    Article  MATH  Google Scholar 

  27. Boschitsch, B.M., Dewey, P.A., Smits, A.J.: Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Phys. Fluids 26, 641–653 (2014)

    Article  Google Scholar 

  28. Zhu, X.J., He, G.W., Zhang, X.: Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Phys. Rev. Lett. 113, 238105 (2014)

    Article  Google Scholar 

  29. Shoele, K., Zhu, Q.: Performance of synchronized fins in biomimetic propulsion. Bioinspir. Biomimet. 10, 026008 (2015)

    Article  Google Scholar 

  30. Khalid, M.S.U., Akhtar, I., Dong, H.B.: Hydrodynamics of a tandem fish school with asynchronous undulation of individuals. J. Fluids Struct. 66, 19–35 (2016)

    Article  Google Scholar 

  31. Lin, X., Wu, J., Yang, L., Dong, H.: Two-dimensional hydrodynamic schooling of two flapping swimmers initially in tandem formation. J. Fluid Mech. 941, 29 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lagopoulos, N.S., Weymouth, G.D., Ganapathisubramani, B.: Deflected wake interaction of tandem flapping foils. J. Fluid Mech. 903, 9 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ashraf, I., Bradshaw, T.T., Ha, J.H., Godoy-Diana, R., Thiria, B.: Simple phalanx pattern leads to energy saving in cohesive fish schooling. Proc. Natl. Acad. Sci. USA 114, 9599 (2017)

    Article  Google Scholar 

  34. Dong, G.J., Lu, X.Y.: Characteristics of flow over travelling wavy foils in a side-by-side arrangement. Phys. Fluids 19, 057107 (2007)

    Article  MATH  Google Scholar 

  35. Dewey, P.A., Quinn, D.B., Boschitsch, B.M., Smits, A.J.: Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration. Phys. Fluids 26, 041903 (2014)

    Article  Google Scholar 

  36. Bao, Y., Zhou, D., Tao, J.J., Peng, Z., Zhu, H.B., Sun, L., Tong, H.L.: Dynamic interference of two anti-phase flapping foils in side-by-side arrangement in an incompressible flow. Phys. Fluids 29, 0336017 (2017)

    Article  Google Scholar 

  37. Gungor, A., Hemmati, A.: Implications of changing synchronization in propulsive performance of side-by-side pitching foils. Bioinspir. Biomimet. 16, 036006 (2021)

    Article  Google Scholar 

  38. Gungor, A., Khalid, M.S.U., Hemmati, A.: How does switching synchronization of pitching parallel foils from out-of-phase to in-phase change their wake dynamics? Phys. Fluids 33, 081901 (2021)

    Article  Google Scholar 

  39. Li, L., Ravi, S., Xie, G., Couzin, I.D.: Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish. Proc. R. Soc. A. 477, 20200810 (2021)

    Article  MathSciNet  Google Scholar 

  40. Gungor, A., Khalid, M.S.U., Hemmati, A.: Classification of vortex patterns of oscillating foils in side-by-side configurations. J. Fluid Mech. 951, 37 (2022)

    Article  Google Scholar 

  41. Huera-Huarte, F.J.: Propulsive performance of a pair of pitching foils in staggered configurations. J. Fluids Struct. 81, 1–13 (2018)

    Article  Google Scholar 

  42. Chao, L.-M., Pan, G., Zhang, D., Yan, G.: On the thrust generation and wake structures of two travelling-wavy foils. Ocean Eng. 183, 167–174 (2019)

    Article  Google Scholar 

  43. Lin, X., Wu, J., Zhang, T., Yang, L.: Flow-mediated organization of two freely flapping swimmers. J. Fluid Mech. 912, 37 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Fish, F.E., Fegely, J.F., Xanthopoulos, C.J.: Burst-and-coast swimming in schooling fish (Notemigonus crysoleucas) with implications for energy economy. Comp. Biochem. Physiol. B 100, 633–637 (1991)

    Article  Google Scholar 

  45. Griffith, B.E.: An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner. J. Comput. Phys. 228, 7565–7595 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Griffith, B.E., Patankar, N.A.: Immersed methods for fluid-structure interaction. Annu. Rev. Fluid Mech. 52, 421–448 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bhalla, A.P.S., Nangia, N., Dafnakis, P., Bracco, G., Mattiazzo, G.: Simulating water-entry/exit problems using Eulerian–Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library. Appl. Ocean Res. 94, 101932 (2020)

    Article  Google Scholar 

  48. Dafnakis, P., Bhalla, A.P.S., Sirigu, S.A., Bonfanti, M., Bracco, G., Mattiazzo, G.: Comparison of wave-structure interaction dynamics of a submerged cylindrical point absorber with three degrees of freedom using potential flow and computational fluid dynamics models. Phys. Fluids 32(9), 093307 (2020)

    Article  Google Scholar 

  49. Khedkar, K., Nangia, N., Thirumalaisamy, R., Bhalla, A.P.S.: The inertial sea wave energy converter (ISWEC) technology: device-physics, multiphase modeling and simulations. Ocean Eng. 229, 108879 (2021)

    Article  Google Scholar 

  50. Khedkar, K., Bhalla, A.P.S.: A model predictive control (MPC)-integrated multiphase immersed boundary (IB) framework for simulating wave energy converters (WECs). Ocean Eng. 260, 111908 (2022)

    Article  Google Scholar 

  51. Bhalla, A.P.S., Bale, R., Griffith, B.E., Patankar, N.A.: A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies. J. Comput. Phys. 250, 446–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bhalla, A.P.S., Griffith, B.E., Patankar, N.A.: A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming. Plos Comput Biol. 9, 1003097 (2013)

    Article  MathSciNet  Google Scholar 

  53. Tytell, E.D., Leftwich, M.C., Hsu, C.-Y., Griffith, B.E., Cohen, A.H., Smits, A.J., Hamlet, C., Fauci, L.J.: Role of body stiffness in undulatory swimming: Insights from robotic and computational models. Phys. Rev. Fluids 1, 073202 (2016)

    Article  Google Scholar 

  54. Gazzola, M., Argentina, M., Mahadevan, L.: Scaling macroscopic aquatic locomotion. Nat. Phys. 10, 758–761 (2014)

    Article  Google Scholar 

  55. Bale, R., Hao, M., Bhalla, A.P.S., Patankar, N.A.: Energy efficiency and allometry of movement of swimming and flying animals. Proc. Natl Acad. Sci. USA 111, 7517–7521 (2014)

    Article  Google Scholar 

  56. Williamson, C.H.K., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluid Struct. 2(4), 355–381 (1988)

    Article  Google Scholar 

Download references

Funding

We acknowledge funding support from the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC 2117-422037984, and the Sino-German Centre in Beijing for generous funding of the Sino-German mobility grant M-0541 (L.L.). A.P.S.B acknowledges support from the United States National Science Foundation awards OAC 1931368 and CBET CAREER 2234387.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amneet Pal Singh Bhalla or Liang Li.

Ethics declarations

Conflict of interest

This work has no competing interests that might be perceived to influence the results and/or discussion.

Ethical approval

Not applicable.

Additional information

Communicated by Karen Mulleners.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, LM., Bhalla, A.P.S. & Li, L. Vortex interactions of two burst-and-coast swimmers in a side-by-side arrangement. Theor. Comput. Fluid Dyn. 37, 505–517 (2023). https://doi.org/10.1007/s00162-023-00664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00664-z

Keywords

Navigation