Abstract
This paper presents an abstract study of completeness properties of non-classical logics with respect to matricial semantics. Given a class of reduced matrix models we define three completeness properties of increasing strength and characterize them in several useful ways. Some of these characterizations hold in absolute generality and others are for logics with generalized implication or disjunction connectives, as considered in the previous papers. Finally, we consider completeness with respect to matrices with a linear dense order and characterize it in terms of an extension property and a syntactical metarule. This is the final part of the investigation started and developed in the papers (Cintula and Noguera in Arch Math Logic 49(4):417–446, 2010; Arch Math Logic 53(3):353–372, 2016).
Similar content being viewed by others
References
Bergman, C.: Structural completeness in algebra and logic. In: Andréka, H., Monk, J., Németi, I. (eds.) Algebraic Logic (Proceedings of Conference, Budapest, 8–14 August 1988), Colloquia Mathematica Societatis János Bolyai, vol. 54, pp. 59–73. North-Holland, Amsterdam (1991)
Botur, M.: A non-associative generalization of Hájek’s BL-algebras. Fuzzy Sets Syst. 178(1), 24–37 (2011)
Ciabattoni, A., Metcalfe, G.: Density elimination. Theor. Comput. Sci. 403(1–2), 328–346 (2008)
Cintula, P., Esteva, F., Gispert, J., Godo, L., Montagna, F., Noguera, C.: Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies. Ann. Pure Appl. Logic 160(1), 53–81 (2009)
Cintula, P., Fermüller, C.G., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic (in Three Volumes), Studies in Logic, Mathematical Logic and Foundations, vols. 37, 38, and 58. College Publications (2011, 2015)
Cintula, P., Horčík, R., Noguera, C.: Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties. Rev. Symb. Logic 6(3), 394–423 (2013)
Cintula, P., Horčík, R., Noguera, C.: The quest for the basic fuzzy logic. In: Montagna, F. (ed.) Petr Hájek on Mathematical Fuzzy Logic, Outstanding Contributions to Logic, vol. 6, pp. 245–290. Springer, New York (2014)
Cintula, P., Noguera, C.: Implicational (semilinear) logics I: a new hierarchy. Arch. Math. Logic 49(4), 417–446 (2010)
Cintula, P., Noguera, C.: A general framework for mathematical fuzzy logic. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic—Volume 1, Studies in Logic, Mathematical Logic and Foundations, vol. 37, pp. 103–207. College Publications, London (2011)
Cintula, P., Noguera, C.: The proof by cases property and its variants in structural consequence relations. Studia Logica 101(4), 713–747 (2013)
Cintula, P., Noguera, C.: Implicational (semilinear) logics II: disjunction and completeness properties. Arch. Math. Logic 53(3), 353–372 (2016)
Czelakowski, J.: Protoalgebraic Logics, Trends in Logic, vol. 10. Kluwer, Dordrecht (2001)
Di Nola, A., Leuştean, I.: Łukasiewicz logic and MV-algebras. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic—Volume 2, Studies in Logic, Mathematical Logic and Foundations, vol. 38, pp. 469–583. College Publications, London (2011)
Esteva, F., Gispert, J., Godo, L., Montagna, F.: On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic. Studia Logica 71(2), 199–226 (2002)
Esteva, F., Gispert, J., Godo, L., Noguera, C.: Adding truth-constants to logics of continuous t-norms: axiomatization and completeness results. Fuzzy Sets Syst. 158(6), 597–618 (2007)
Font, J.M.: Abstract Algebraic Logic. An Introductory Textbook, Studies in Logic, vol. 60. College Publications, London (2016)
Font, J.M., Jansana, R.: A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic, vol. 7, 2nd edn. Association for Symbolic Logic, Ithaca. http://projecteuclid.org/euclid.lnl/1235416965 (2009)
Font, J.M., Jansana, R., Pigozzi, D.L.: A survey of abstract algebraic logic. Studia Logica 74(1–2), 13–97 (2003)
Horčík, R.: Algebraic semantics: semilinear FL-algebras. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic—Volume 1, Studies in Logic, Mathematical Logic and Foundations, vol. 37, pp. 283–353. College Publications, London (2011)
Lávička, T., Noguera, C.: A new hierarchy of infinitary logics in abstract algebraic logic. Studia Logica 105(3), 521–551 (2017)
Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, cl. III 23(iii), 30–50 (1930)
Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Logic 72(3), 834–864 (2007)
Metcalfe, G., Olivetti, N., Gabbay, D.M.: Proof Theory for Fuzzy Logics, Applied Logic Series, vol. 36. Springer, New York (2008)
Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Logic 49(3), 851–866 (1984)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cintula, P., Noguera, C. Implicational (semilinear) logics III: completeness properties. Arch. Math. Logic 57, 391–420 (2018). https://doi.org/10.1007/s00153-017-0577-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-017-0577-0
Keywords
- Abstract algebraic logic
- Protoalgebraic logics
- Implicational logics
- Disjunctional logics
- Semilinear logics
- Non-classical logics
- Completeness theorems
- Rational completeness