Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Vaq-Assisted Low-Power Capacitor-Splitting Switching Scheme for SAR ADCs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel four-level capacitor-splitting switching scheme for successive approximation register analog-to-digital converters is proposed. The fourth reference voltage Vaq, equal to VREF/4, is introduced during the last bit-cycle to optimize capacitor area and power consumption. So, for a 10-bit SAR ADC, the capacitor area is reduced by 75%, and average switching energy of − 5.4 CVREF2 is achieved, which is 102.11% less than the monotonic switching method. The common-mode voltage remains at VREF/2 except for the last two bit-cycles. 1% capacitor mismatch leads to root-mean-square (RMS) values of 0.321 LSB for DNL and INL. Inaccuracy of VCM/Vaq has little effect on the accuracy of the SAR ADC. Vaq control logic is easier to design than those of other reference voltages. As a result, the proposed switching scheme offers a better trade-off between energy efficiency, capacitor saving, common-mode voltage variation, logic complexity, and accuracy. A 0.6-V 10-bit 20 KS/s SAR ADC in 0.18-μm 1P6M CMOS technology is designed, occupying an area of about 340 × 380 μm2. The SAR ADC with Nyquist rate input has ENOB, SNDR, and SFDR values of 9.57 bits, 59.41 dB, and 70.56 dB, respectively. It consumes 35.1 nW, resulting in a figure-of-merit (FoM) of 2.31 fJ/conversion-step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

References

  1. M. Akbari, O. Hashemipour, F. Khateb, F. Moradi, An energy-efficient DAC switching algorithm based on charge RECYCLING METHOD for SAR ADCs. Microelectron. J. 82, 29–35 (2018)

    Article  Google Scholar 

  2. M. Akbari, O. Hashemipour, M. Nazari, A charge sharing-based switching scheme for SAR ADCs. Int. J. Circuit Theor. Appl. 47(7), 1188–1198 (2019)

    Article  Google Scholar 

  3. L. Chen, A. Sanyal, J. Ma, X. Tang, N. Sun, Comparator common-mode variation effects analysis and its application in SAR ADCs. IEEE Int. Symp. Circuit Syst. (ISCAS) (2016). https://doi.org/10.1109/ISCAS.2016.7538972

    Article  Google Scholar 

  4. Y. Chen, Y. Zhuang, H. Tang, A highly energy-efficient, area-efficient switching scheme for SAR ADC in biomedical applications. Analog Integr. Circuit Signal Process. 101(1), 133–143 (2019)

    Article  Google Scholar 

  5. R. Ding, H. Liang, S. Liu, A novel switching scheme and area-saving architecture for SAR ADC. Analog Integr. Circuit Signal Process. 91(1), 149–154 (2017)

    Article  Google Scholar 

  6. J. Gao, W. Guo, Z. Zhu, Energy-efficient common-mode voltage switching scheme for SAR ADCs. Analog Integr. Circuit Signal Process. 89(2), 499–506 (2016)

    Article  Google Scholar 

  7. B. Ghanavati, E. Abiri, M.R. Salehi, A. Keyhani, A. Sanyal, LSB split capacitor SAR ADC with 99.2% switching energy reduction. Analog Integr. Circuit Signal Process. 93(2), 375–382 (2017)

    Article  Google Scholar 

  8. B.P. Ginsburg, A.P. Chandrakasan, 500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC. IEEE J. Solid State Circuit 42(4), 739–747 (2007)

    Article  Google Scholar 

  9. L. Huang, L. Zhang, M. Chen, J. Li, J. Wu, A low-energy and area-efficient vaq-based switching scheme with capacitor-splitting structure for SAR ADCs. Circuit Syst. Signal Process. 40(8), 4106–4126 (2021)

    Article  Google Scholar 

  10. J. Lin, C. Hsieh, A 0.3 V 10-bit SAR ADC with first 2-bit guess in 90-nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 64(3), 562–572 (2017)

    Article  Google Scholar 

  11. C. Liu, S. Chang, G. Huang, Y. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45(4), 731–740 (2010)

    Article  Google Scholar 

  12. J. Liu, R. Ding, S. Liu, Z. Zhu, A highly energy-efficient, highly area-efficient capacitance multiplexing switching scheme for SAR ADC. Analog Integr. Circuit Signal Process. 96(1), 207–215 (2018)

    Article  Google Scholar 

  13. Y. Ni, L. Liu, S. Xu, Mixed capacitor switching scheme for SAR ADC with highest switching energy efficiency. Electron. Lett. 51(6), 466–467 (2015)

    Article  Google Scholar 

  14. D. Osipov, S. Paul, Low power SAR ADC with two-step switching scheme in 65 nm standard CMOS process. In: IEEE International conference on microelectronics (MIEL), pp. 209–212 (2017)

  15. D. Osipov, S. Paul, Two advanced energy-back SAR ADC architectures with 99.21 and 99.37% reduction in switching energy. Analog Integr. Circuit Signal Process. 87(1), 81–91 (2016)

    Article  Google Scholar 

  16. W. Qu, Z. Zhang, N. Mei, A 99.43% energy saving switching scheme with asymmetric binary search algorithm for SAR ADCs. Circuit Syst. Signal Process. 39(9), 4695–4704 (2020)

    Article  Google Scholar 

  17. A. Sanyal, N. Sun, SAR ADC architecture with 98% reduction in switching energy over conventional scheme. Electron. Lett. 49(4), 248–250 (2013)

    Article  Google Scholar 

  18. A. Sanyal, N. Sun, An energy-efficient low frequency-dependence switching technique for SAR ADCs. IEEE Trans. Circuit Syst. II Express Briefs 61(5), 294–298 (2014)

    Google Scholar 

  19. S. Sarafi, A.K.B. Aain, J. Abbaszadeh, High-linear, energy-efficient and area-efficient switching algorithm for high-speed SAR ADCs. Microelectron. J. 45(3), 288–296 (2014)

    Article  Google Scholar 

  20. F. Shakibaee, F. Sajedi, M. Saberi, A low-power successive approximation ADC using split-monotonic capacitive DAC. IET Circuit Device Syst. 12(2), 203–208 (2018)

    Article  Google Scholar 

  21. M. Sotoudeh, F. Rezaei, A four-level switching scheme for SAR ADCs with 87.5% area saving and 97.85% energy-reduction. Circuit Syst. Signal Process. 39(10), 4792–4809 (2020)

    Article  Google Scholar 

  22. X.Y. Tong, W.P. Zhang, F.X. Li, Low-energy and area-efficient switching scheme for SAR A/D converter. Analog Integr. Circuit Signal Process. 80(1), 153–157 (2014)

    Article  Google Scholar 

  23. X.Y. Tong, Y.P. Zhang, 98.8% switching energy reduction in SAR ADC for bioelectronics application. Electron. Lett. 51(14), 1052–1054 (2015)

    Article  Google Scholar 

  24. H. Wang, L. Zhong, S. Zheng, Ultra-low-power capacitor-splitting switching algorithm with minus energy for SAR ADCs. Analog Integr. Circuit Signal Process. 91(3), 491–495 (2017)

    Article  Google Scholar 

  25. H. Wang, Z. Zhu, R. Ding, Energy-efficient and area-efficient tri-level floating capacitor switching scheme for SAR ADC. Analog Integr. Circuit Signal Process. 85(2), 373–377 (2015)

    Article  Google Scholar 

  26. H. Wang, C. Liu, W. Xie, Q. Zhang, Tri-level capacitor-splitting switching scheme with high energy-efficiency for SAR ADCs. IEICE Electron. Express 13(20), 20160645 (2016)

    Article  Google Scholar 

  27. H. Wang, W. Xie, Z. Chen, S. Cai, A capacitor-splitting switching scheme with low total power consumption for SAR ADCs. J. Circuit Syst. Comput. 28(4), 185016 (2018)

    Google Scholar 

  28. T. Wang, H. Li, Z. Ma, Y. Huang, S. Peng, A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications. IEEE J. Solid State Circuit 53(6), 1743–1754 (2018)

    Article  Google Scholar 

  29. L. Xie, G. Wen, J. Liu, Y. Wang, Energy-efficient hybrid capacitor switching scheme for SAR ADC. Electron. Lett. 50(1), 22–23 (2014)

    Article  Google Scholar 

  30. X. Xin, J. Cai, R. Xie, 99.83% Switching energy reduction over conventional scheme for SAR ADC without reset energy. Analog Integr. Circuit Signal Process. 94(3), 519–528 (2018)

    Article  Google Scholar 

  31. C. Yuan, Y. Lam, Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electron. Lett. 48(9), 482–483 (2012)

    Article  Google Scholar 

  32. J. Yao, Z. Zhu, Y. Wang, Y. Yang, Variable resolution SAR ADC architecture with 99.6% reduction in switching energy over conventional scheme. IEICE Electron. Express 12(5), 20150099 (2015)

    Article  Google Scholar 

  33. B. Yazdani, A. Khorami, M. Sharifkhani, Low-power bottom-plate sampling capacitor-splitting DAC for SAR ADCs. Electron. Lett. 52(11), 913–915 (2016)

    Article  Google Scholar 

  34. T. Yousefi, A. Dabbaghian, M. Yavari, An energy-efficient DAC switching method for SAR ADCs. IEEE Trans. Circuit Syst. II Express Briefs 65(1), 41–45 (2017)

    Google Scholar 

  35. J. Zhang, Z. Zhu, High energy-efficient partial floating capacitor array DAC scheme for SAR ADCs. Analog Integr. Circuit Signal Process. 94(1), 171–175 (2018)

    Article  MathSciNet  Google Scholar 

  36. Y. Zhang, Y. Li, Z. Zhu, A charge-sharing switching scheme for SAR ADCs in biomedical applications. Microelectron. J. 75, 128–136 (2018)

    Article  Google Scholar 

  37. J. Zhao, N. Mei, Z. Zhang, L. Meng, Vaq-based tri-level switching scheme for SAR ADC. Electron. Lett. 54(2), 66–68 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Vaq-Assisted Low-Power Capacitor-Splitting Switching Scheme for SAR ADCs. Circuits Syst Signal Process 41, 6615–6631 (2022). https://doi.org/10.1007/s00034-022-02097-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02097-1

Keywords

Navigation